
Economics and best
practices of running AI/ML
workloads on Kubernetes

Maulin Patel, Product Manager, Google
Yaron Haviv, CTO and Founder of Iguazio

Dat
a

Decisions

Ins
igh

ts

AI/ML

$

AI/ML driven decisions

Simple

Fast

Cost-effective

M A K I N G

AI/ML

AI/ML is a team sport

How to make AI/ML teams

More Productive

Cloud native AI/ML platform

ML Framework +
Container +
Kubernetes + HW
Accelerators

Choose your favorite
ML Framework, pack
models up in
Containers, run on
Kubernetes at scale

ML Framework
Industry-standard & widely adopted

Container
Industry-standard

Container
Orchestration

Industry-standard

Hardware Accelerators GPUs TPUsCPUs

Simple/Fast/Cost-effective

Why Kubernetes for AI/ML?

● Portability
○ Cloud native, open, standard APIs

■ Seamlessly port workloads between Laptop/Cloud

● Scalability
○ Kubernetes scales from a single

workstation to thousands of nodes
■ Support for GPU/TPU and distributed computing

● Productivity
○ Frees up users from managing their own

workstations, servers and VMs.
■ Lets you focus on model building and training

Design
Experiment

Provision
Resources

Train

Evaluate

Teardown
Resources

Design
Experiment

K8s provisions
resources

Evaluate

Without
Kubernetes

With
Kubernetes

Simple/Fast/Cost-effective

8

Kubeflow

A Kubernetes-native OSS
Platform to Develop, Deploy
and Manage, Scalable and
End-to-End ML Workloads

https://kubeflow.org

https://github.com/kubeflow

TensorFlow training (TFJob)

● Integrates TensorFlow distributed training
and estimator API with Kubernetes

● Uses Kubernetes to scale training and
leverage hardware accelerators

● Users benefit from Kubernetes toolchain
○ kubectl for CLI
○ Kubernetes dashboard for monitoring

apiVersion: kubeflow.org/v1alpha2
kind: TFJob
metadata:
 name: tf-job-simple
 namespace: kubeflow
spec:
 tfReplicaSpecs:
 Workers:
 replicas: 3
 template:
 spec:
 containers:
 - image: acme/myjob

Simple/Fast/Cost-effective

TensorFlow serving

● Kubernetes native TFServing

● Leveraging Kubernetes to simplify

model rollouts

● Prometheus exporter for metrics

● ISTIO for telemetry and traffic

splitting

model push ≠ binary push

Simple/Fast/Cost-effective

11

Get started right

● Day 0 start with the infrastructure
(Notebook, Kubernetes, ISTIO, etc...)

● Day 0 focus on model development

○ Use UIs to launch notebooks

○ Python SDK (fairing) for training /
deploying models

● Day N leverage K8s to scale

○ Use the same infrastructure as non-ML
applications

○ Build a single infrastructure team

Simple/Fast/Cost-effective

Day 0: Data scientist friendly Notebooks

12

Connect to
data, machines

Build models

Train

1

2

3

Deploy4

Simple/Fast/Cost-effective

13

Deploy Model

Simple/Fast/Cost-effective

Experimentation by multiple data scientists

14

Simple/Fast/Cost-effective

Kubernetes can handle the complete stack

15

Simple/Fast/Cost-effective

 Kubeflow

On-premises

Training Prediction

Hybrid ML SDK

...

AI Platform

Cloud Provider

Training Prediction ...

Simple/Fast/Cost-effective

Kubeflow Fairing is an open
source Hybrid ML SDK for
data scientists to ‘write ML
code once and run
anywhere’. AI Platform

Local

Simple/Fast/Cost-effective

Code: Today

Local

import xgboost

class MyModel(object):
 def train(self):
 # load data
 # do feature engineering
 # train a model

 def predict():
 # prediction logic

if __name__ == '__main__':
 model = MyModel()
 model.train()

Build & Deploy to AI Platform

Training

gcloud ml-engine jobs submit training my_job \
 --module-name trainer.task \
 --staging-bucket gs://my-bucket \
 --package-path /my/code/path/trainer \
 --packages additional-dep1.tar.gz,dep2.whl

Prediction

gcloud alpha ml-engine versions create
{VERSION_NAME} --model {MODEL_NAME} \ --origin
gs://{BUCKET}/{MODEL_DIR}/ \ --runtime-version
{RUNTIME_VERSION} \ --package-uris
gs://{BUCKET}/{PACKAGES_DIR}/my_package-0.2.tar.gz \
--model-class=my_model.ModelExample

Build & Deploy to Kubeflow

apiVersion: kubeflow.org/v1alpha2
kind: TFJob
metadata:
 labels:
 experiment: experiment10
 name: tfjob
 namespace: kubeflow
spec:
 tfReplicaSpecs:
 Ps:
 replicas: 1
 template:
 metadata:
 creationTimestamp: null
 spec:
 containers:
 - args:
 - python
 - tf_cnn_benchmarks.py
 image:
.
.
.
.

Simple/Fast/Cost-effective

Local

import xgboost

class MyModel(object):
 def train(self):
 # load data
 # train a model

 def predict():
 # prediction logic

from fairing import TrainJob
from fairing.backends import Backend

job = TrainJob(MyModel,
 backend=Backend(“Local”,
 “fairing.config”))
job.submit()

endpoint = PredictionEndpoint(MyModel,
 backend=Backend(“Local”,
 “fairing.config”))
endpoint.create()

Build & Deploy to AI Platform

import xgboost

class MyModel(object):
 def train(self):
 # load data
 # train a model

 def predict():
 # prediction logic

from fairing import TrainJob
from fairing.backends import Backend

job = TrainJob(MyModel,
 backend=Backend(“ai_platform”,
 “fairing.config”))
job.submit()

endpoint = PredictionEndpoint(MyModel,
 backend=Backend(“ai_platform”,
 “fairing.config”))
endpoint.create()

Build & Deploy to Kubeflow

import xgboost

class MyModel(object):
 def train(self):
 # load data
 # train a model

 def predict():
 # prediction logic

from fairing import TrainJob
from fairing.backends import Backend

job = TrainJob(MyModel,
 backend=Backend(“Kubeflow”,
 “fairing.config”))
job.submit()

endpoint = PredictionEndpoint(MyModel,
 backend=Backend(“Kubeflow”,
 “fairing.config”))
endpoint.create()

Code: With Kubeflow Fairing

Simple/Fast/Cost-effective

Code: With Kubeflow Fairing
Local

import xgboost

class MyModel(object):
 def train(self):
 # load data
 # train a model

 def predict():
 # prediction logic

from fairing import TrainJob
from fairing.backends import Backend

job = TrainJob(MyModel,
 backend=Backend(“Local”,
 “fairing.config”))
job.submit()

endpoint = PredictionEndpoint(MyModel,
 backend=Backend(“Local”,
 “fairing.config”))
endpoint.create()

Build & Deploy to AI Platform

import xgboost

class MyModel(object):
 def train(self):
 # load data
 # train a model

 def predict():
 # prediction logic

from fairing import TrainJob
from fairing.backends import Backend

job = TrainJob(MyModel,
 backend=Backend(“ai_platform”,
 “fairing.config”))
job.submit()

endpoint = PredictionEndpoint(MyModel,
 backend=Backend(“ai_platform”,
 “fairing.config”))
endpoint.create()

Build & Deploy to Kubeflow

import xgboost

class MyModel(object):
 def train(self):
 # load data
 # train a model

 def predict():
 # prediction logic

from fairing import TrainJob
from fairing.backends import Backend

job = TrainJob(MyModel,
 backend=Backend(“Kubeflow”,
 “fairing.config”))
job.submit()

endpoint = PredictionEndpoint(MyModel,
 backend=Backend(“Kubeflow”,
 “fairing.config”))
endpoint.create()

Simple/Fast/Cost-effective

Kubeflow Fairing

Scalable and Cost Effective: Data Scientists can
easily burst onto GCP when they need more
resources (i.e. more machines, GPUs, or TPUs).

Data Scientist Focused: Simple and uses
language familiar to Data Scientists

Multi-Platform: Supports AI Platform and Kubleflow,
making it easy for users to switch between on-prem
and GCP.

Multi-Framework: Supports XGBoost,
TensorFlow (single node), and Pytorch (single
node).

Easily Train, Tune and Deploy models:
Supports the full ML lifecycle.

An open source Hybrid ML SDK for
data scientists to ‘write ML code
once and run anywhere’

Simple/Fast/Cost-effective

Demo: Hybrid E2E ML with Kubeflow Fairing

Discover

AI Platform

Share

AI Hub

AI Hub

Build
Local

Train

Deploy
AI Platform

Simple/Fast/Cost-effective

DEMO

https://docs.google.com/file/d/1ezwKOkWhN1aHFv5FJmu_tQVxOHl8-GrD/preview

Kubeflow Fairing: Key Benefits for ML Ops Teams

Standardized API Enforces Best Practices1

2

3

Open Source SDK --> No Lock-in

Easy ‘Remoting’ & Bursting to the Cloud

Simple/Fast/Cost-effective

Cluster autoscaler with GPUs and TPUs

● Automatically scale up/down
the cluster for the best
performance over cost

● Nodes with GPUs/TPUs get
created when a cluster needs
more capacity

● Nodes with GPUs/TPUs get
deleted when they’re idle

Simple/Fast/Cost-effective

26

Today: ML Pipeline is Complex and Siloed
Multiple Management
Interfaces:

Collection and
Exploration

ML Development
and Training

Deployment & Serving
(cloud or edge)

Stream Processing

ETL and Batch ML Training Jobs

Interactive Data Science ML model

Interactive app

Data and
Compute:

Data and
Compute:

Data and
Compute:

Data Engineers
App Developers,
Data EngineersData Scientists

Data Sources

Data Lakes/
Warehouses Reports and

Dashboards

Triggers and
Interaction

27

Kubernetes: One Platform, Complete ML Lifecycle

Persistent Data and Computation Cluster

Scalable & Open
ML Pipeline

Serverless
Models & APIs

Automated Collection
& Pre-processing

Monitor

Intelligent &
Interactive Apps

Simple and
self-service
consumption

Real-time and historical data

Open
Services

Data Sources

28

Open-Source ML Pipeline Components By Category

Data Ingest
& Prep

Training
& Validation

model
serving

Dev Tools
<..>

29

Typical Data Science Pipeline

Data Ingest
& Prep

Source A
(Batch)

Feature
Vector

Snapshot model
training

model
validation

Data Ingest
& Prep

Source B
(Stream)

Data Ingest
& Prep

Source C
(Fetch)

model
deployment

Deployment
testing

Model Report Function Notification

Output
Artifact

Run

Code
Input

Model Tests
serving
function TestsETL/Stream

Pipeline must be automated !

KubeFlow Pipeline

● Advanced workflow engine and
experiment management in one tool

● Convert python code to workflows

● Reusable component library

● Managing multiple runs, compare
artifacts and results between runs

● Steps can be containers, code scripts,
CRDs (e.g. TFJob), and now functions

30

31

Application Serving Environment, More Challenges

Data Ingest
& Prep

Source A
(Batch)

Historical and
real-time data

model
serving

Build
feature
vectorData Ingest

& Prep
Source B
(Stream)

Data Ingest
& Prep

Source C
(Fetch)

Business
App

Real-time Application Pipeline

Monitoring
& Logging

Intelligent &
Interactive Apps

Serverless A Way To Simplify Data Science

● Automate process from code to container and assigned cluster resources
● Add instrumentation with minimal developer overhead
● Auto scaling, rolling upgrades, …

32

Sounds Ideal So Why Not?

33

Nuclio: Taking Serverless to Data Intensive Apps

▪ Non-blocking, parallel
▪ Zero copy, buffer reuse
▪ Up to 400K events/sec/proc
▪ GPU optimizations

Extreme Performance Advanced Data & AI Features

▪ Auto-rebalance, checkpoints
▪ Any source: Kafka, NATS, Kinesis,

event-hub, iguazio, pub/sub, RabbitMQ,
Cron, ..

▪ Jupyter, NVIDIA Rapids
integration

▪ Data bindings
▪ Shared volumes
▪ Context cache

Statefulness

34

Nuclio Automating & Accelerating Data Science

One magic command from
notebook to function

Extending Pipelines from batch:

1. Parallel processing steps

2. Code build/deployment steps

3. Stream processing

GPU resource optimization for ETL, DL and ML
Automation:

1. Auto-scaling (to zero)

2. Automated logging & monitoring

3. Security hardening

4. Auto-build and CI/CD

5. Workload mobility (cloud/edge/..)

Demo: Building an end to end ML
pipeline in minutes with KubeFlow

35

Simple

Fast

Cost-effective

Empowering your teams to drive innovation

● Data Scientist friendly notebooks
● Freedom from managing infrastructure
● TFJob, TFServing, ...

● On-demand scale up and down
● GPUs and TPUs

● Making AI/ML teams more productive
● Avoid vendor lock-in with open platform
● Write once run anywhere
● Preemptible GPUs/TPUs

