

Building Cloud Native GDPR Friendly Systems for Data Collection

What is VTT?

- Technical Research Centre of Finland
- About 2000 researchers
- Wide array of topics
 - Nuclear safety
 - Printed electronics
 - Food science
 - Data-driven services
- About 200 projects develop software yearly, involving 5% of personnel
- Yearly 10-20 projects have to gather new datasets for research

GDPR in a nutshell

GDPR in a nutshell

- General Data Protection Regulation
- Came into effect on 25th of May, 2018
- Contains rules for protection, privacy and processing of personally identifiable data of EU / EEA citizens regardless of the place of processing
- Defines the rights of individuals
 - Transparency about the data handling process, data breaches, etc.
 - Access to personal data
 - Correct / delete personal data
 - Etc.

GDPR in a nutshell (cont.)

- Adapting these rules required changes on many levels of the organization
 - Improved data management and access control
 - Company DPO
 - GDPR Handbook for project managers
- Projects play a very important role too
 - Data-mapping
 - Impact analysis

GDPR in a nutshell – Data-mapping

- What data will be collected (hardest question for research)
- Check if any personally identifiable data will be collected
- Define the basis for data collection:
 - Consent
 - Contract
 - Public interest
- Define the data security features:
 - Transport / storage / archival security
 - Pseudonymization or anonymization
 - Access control

6.5.2019

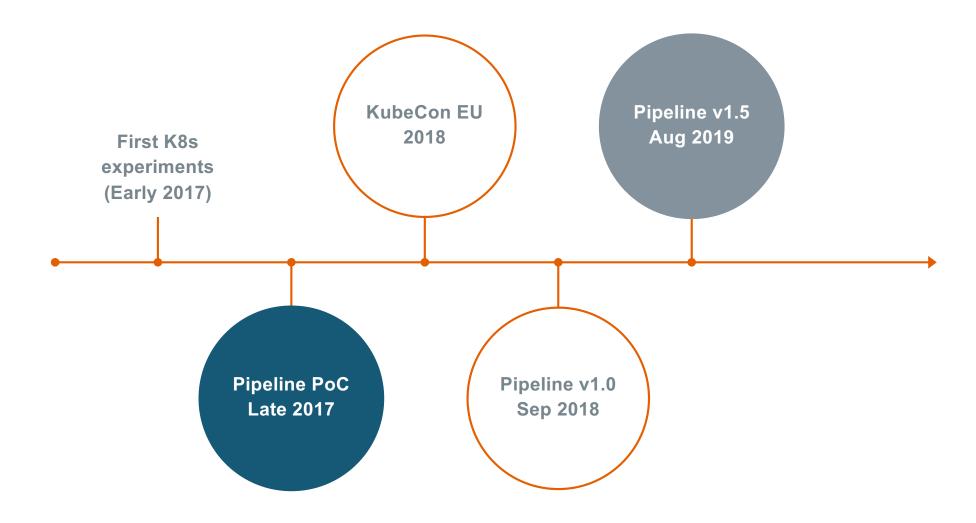
How to help our projects?

A generic pipeline

- Project team has to own the deployment
- Empowering the researchers
 - They are experts of their fields (e.g.: machine learning)
 - The best way to use their talent is to do research
- We want to give them tools that takes care of the basics
 - Automated provisioning
 - Monitoring
 - Ingress with TLS*
 - Cluster-internal mTLS (between services)*
- Customizable

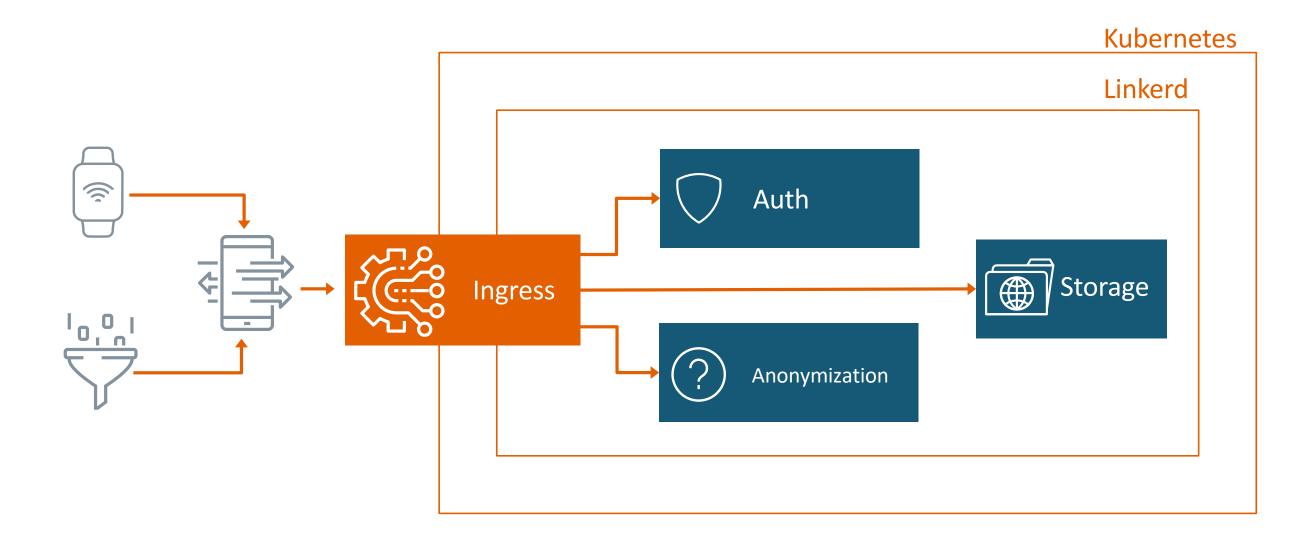
6.5.2019

A generic pipeline (cont.)


- We also provide some generic components (microservices)
 - Timestamped key-value store with optional location data, encryption*
 - Authentication / authorization service (uses OIDC, user ID tokenization)*
 - Location anonymization using machine-learning (trained on user-data to identify often visited areas)*
 - Pre-processing tools*
 - Android application to collect sensor data ("BT gateway")
- Not a standalone project
 - Identify reusable components in public-research projects
 - Refine / extend iteratively

6.5.2019

VTT – beyond the obvious


Our timeline

Pieces to the (cluster) puzzle

RPC protocol

- Http/2 based RPC protocol
- Protobuf based data-object / service definition
- Client / server bindings are generated
- Many target languages
- Effective, binary data-representation
- gRPC-web brings support for webclients

Ingress

- When using gRPC a LoadBalancer type
 Service is not ideal
 - Layer 4 vs Layer 7
- Takes care of TLS termination
- We had previous experience with Envoy, but other options are also available (e.g.: Nginx, Traefik)
- All of them offer features beyond Ingress specification

TLS certificate management

- Certificates from Let's Encrypt
- Cert-manager by Jetstack
 - Supports HTTP and DNS based validation
 - HTTP validation works only if Ingress objects work
 - Only DNS based validation supports wildcard domain names

Service mesh

- Original goals:
 - Monitoring with no change to service code
 - Pre-configured dashboard
 - Lightweight (memory, CPU)
- mTLS originally seen as nice extra
 - With certain data types (sensitive personal information, e.g.: health data) it helps a lot with GDPR compliance
 - Some performance penalty
- Nice functions we don't utilize much yet
 - Retry budget

Automated provisioning

- Infrastructure as code, using real programming languages
 - JavaScript / TypeScript (Node.js)
 - Python
- Automatic and manual dependency
- Great Kubernetes support
 - Programmatic Kubernetes objects
 - Helm charts / Standalone Yaml files
 - Waiting for components to became ready

Batch processing

- Argo Workflows
- Container-native workflow engine
- Multi-step workflows modelled as directed acyclic graph (DAG)
- Parallel steps
- Parameterizable
- Loops / conditionals
- Artifact support

Demo time!

19

Quick links

- TGIK: https://github.com/heptio/tgik
- K9S (Kubernetes CLI): https://k9ss.io/
- Kubernetes context switcher: https://kubectx.dev/
- Kubectl plugins
 - Package manager: https://krew.dev/
 - Access matrix: https://github.com/corneliusweig/rakkess
 - Wireshark: https://github.com/eldadru/ksniff

Presenter info

- Zsolt Homorodi, Senior Specialist, VTT
- @HaZseTata
- https://github.com/hazsetata
- https://gitlab.com/hazsetata
- Demo: https://gitlab.com/hazsetata/kceu2019