
Benchmarking
Cloud Native Database
Iqbal Farabi and Tara Baskara
KubeCon + CloudNativeCon Europe 2019



Hola!

Iqbal Farabi
System Engineer

Go-Jek Indonesia

@iqbal_farabi

Tara Baskara
System Engineer

Go-Jek Indonesia

@iqbal_farabi



We’re from Jakarta, Indonesia







Go-Jek 1.0
Call-center
for ojek service

01

Mobile App
First mobile app was 
launched

02

More Apps!
Incl. growth of Go-Pay 
into P2P, withdrawal, etc

03

2010 2015 2017 2018

Fintech
Acquired three fintech 
companies in Indonesia

04

Brief History





The Journey Continues…



Outline



Today we will 
discuss about…

• What is cloud native database? What databases do we 
pick to run the experiments on? What are their 
characteristics?

Cloud Native Database

• What is YCSB? What does it measure? What are the 
different kind of workloads defined?

YCSB

• Setup, experiments, and brief explanation of the results.

Experiments and Results



Cloud Native Database



CNCF defines cloud native technologies as, 
"technologies that empower organizations to 
build and run scalable applications in modern 
and dynamic environments. Cloud native 
technologies enable loosely coupled systems 
that are resilient, manageable, and 

observable”.

Definition

https://github.com/cncf/foundation/blob/master/charter.md


Landscape



• Open source
• Operational database
• ACID compliance
• Provides SQL-like API

Filtering



• https://www.cockroachlabs.com/

CockroachDB

• https://pingcap.com/en/

TiDB

• https://www.yugabyte.com/

YugaByte DB

The List

https://www.cockroachlabs.com/
https://pingcap.com/en/
https://www.yugabyte.com/


CockroachDB is a distributed SQL database 
built on a transactional and strongly-consistent 
key-value store.
It aims to:
• Scales horizontally
• Provides fault resiliency

• Supports strongly-consistent ACID 
transactions

• Provides a familiar SQL API with 
PostgreSQL-like sytax

CockroachDB



CockroachDB Architecture

image source: https://thenewstack.io/cockroachdb-unkillable-distributed-sql-database/

https://thenewstack.io/cockroachdb-unkillable-distributed-sql-database/


TiDB
TiDB is an open-source NewSQL database that 
supports Hybrid Transactional and Analytical 
Processing (HTAP) workloads.
It aims to:
• Scales horizontally
• Provides fault resiliency

• Supports distributed transactions with 
strong consistency

• Provides a familiar SQL API with MySQL-like 
syntax



TiDB Architecture

image source: https://pingcap.com/docs/architecture/

https://pingcap.com/docs/architecture/


YugaByte DB
CockroachDB is a distributed SQL database 
built on a transactional and strongly-consistent 
key-value store.
It aims to:
• Scales with autosharding
• Provides fault resiliency

• Supports multi-shard ACID transactions
• Provides YugaByte Structured Query 

Language (YSQL) and YugaByte Cloud Query 
Language (YCQL) APIs.



YugaByte DB Architecture

image source: https://blog.yugabyte.com/yugabyte-db-architecture-diverse-workloads-with-operational-simplicity/

https://blog.yugabyte.com/yugabyte-db-architecture-diverse-workloads-with-operational-simplicity/


According to Brian F. Cooper et al., in their 
YCSB paper, there are four main tradeoffs 
faced by cloud serving systems: 
• read vs write performance
• latency vs durability
• synchronous vs asynchronous replication

• data partitioning

Classifications (1)

https://www2.cs.duke.edu/courses/fall13/cps296.4/838-CloudPapers/ycsb.pdf


Latency vs Durability

Write operations synced to disk before 
returning success will increase durability in the 
case of system failures. However it might lower 
throughput and increase latency.

Write operations stored in memory and synced 
later will increase throughput and decrease 
latency, but might increase the risk of data loss 
in case of system failures.

Classifications (2)



Synchronous vs Asynchronous Replication

Synchronous replication ensures consistency 
among all nodes but might increase latency.

Asynchronous replication decreases latency 

but might cause data loss if failure happens to 
nodes with data that not replicated yet.

Classifications (3)



Data Partitioning

Strictly row-based partitioning allows efficient 
access to an entire record of data.

Column-based partitioning allows efficient 

access for a subset columns when retrieving 
multiple records.

Classifications (4)



Classifications (5)
Database Latency/durability Sync/async

replication
Row/column 
partitioning

CockroachDB Durability Synchronous Row

TiDB Durability Synchronous Row

YugaByte DB Latency Asynchronous Row



YCSB



Created by Brian F. Cooper et al. to create a 
standard benchmark and benchmarking 
framework to assist in the evaluation of 
different cloud systems.

Focus on serving systems, which serve read 

and write workloads, over batch or analytical 
systems.

Yahoo!
Cloud Serving
Benchmark



YCSB workloads data look like the following: 
• 1 table named “usertable”
• 10 string fields, 1 primary key with content 

like “user123456”, 9 fields with content a 
random string of ASCII characters with 100 
bytes length

• 1,000,000 records
• 1,000,000 operations with 1,000 threads for 

Workload A, B, C, and D
• 1,000,000 operations with 100 threads for 

Workload E

Workloads Data



Operations performed by YCSB are:
• Insert: insert new record.
• Update: update a record by replacing the 

value of one field.
• Read: read a record, either one randomly 

chosen field or all fields.

• Scan: scan records in order, starting at 
randomly chosen record key with randomly 
chosen number of records.

Operations



To choose which operations (insert, update, 
read, or scan) to perform on which records and 
how many records, YCSB has several built-in 
distributions:
• Uniform: choose an item uniformly at 

random.

• Zipfian: some item will be extremely 
popular, most records will be unpopular.

• Latest: like Zipfian with preference of latest 
inserted records as popular distribution.

• Multinomial: probabilities of each item can 
be specified.

Distributions



Workloads
Workload Operations Distribution Application Example

A – Update Heavy Read: 50%
Update: 50%

Zipfian User session: session store 
recording recent actions

B – Read Heavy Read: 95%
Update: 5%

Zipfian Photo tag: add tag is update, 
but most ops are reading tags

C – Read Only Read: 100% Zipfian User profile cache

D – Read Latest Read: 95%
Insert: 5%

Latest User status updates; people 
want to read the latest

E – Short Ranges Scan: 95%
Insert: 5%

Zipfian/Uniform Threaded conversations



Experiments and Results



3 nodes GKE cluster with following 
specifications:
• n1-standard-16 machine type
• 1000 GB Local SSD
• 60 GB RAM

Cluster Setup



Resource:
• 14 vCPU request, 16 vCPU limit
• 30 GB RAM request, 60 GB RAM limit
• 500 GB SSD local persistent volume

Statefulset Setup



All experiments in this presentation all done 
using a Go port of YCSB called go-ycsb created 
by engineers at PingCap, the company that 
creates TiDB.

go-ycsb

https://github.com/pingcap/go-ycsb


Workload A - Read

324.3

47.9
25.6

0

50

100

150

200

250

300

350

CockroachDBB TiDB YugaByte DB

Latency

Average Latency (ms)

1203.1

595.1

1595.6

0
200
400
600
800

1000
1200
1400
1600
1800

CockroachDBB TiDB YugaByte DB

Throughput

Peak Throughput (ops)



Workload A - Update

455.9

83.3
26.9

0

100

200

300

400

500

CockroachDBB TiDB YugaByte DB

Latency

Average Latency (ms)

1224.8

607.3

1604.6

0
200
400
600
800

1000
1200
1400
1600
1800

CockroachDBB TiDB YugaByte DB

Throughput

Peak Throughput (ops)



Workload B - Read

206.3

48.5
29.5

0

50

100

150

200

250

CockroachDBB TiDB YugaByte DB

Latency

Average Latency (ms)

4457.5

1871.7

3098.8

0

1000

2000

3000

4000

5000

CockroachDBB TiDB YugaByte DB

Throughput

Peak Throughput (ops)



Workload B - Update

358.1

92.8

31.8

0

50

100

150

200

250

300

350

400

CockroachDBB TiDB YugaByte DB

Latency

Average Latency (ms)

234.7

98.4

160.2

0

50

100

150

200

250

CockroachDBB TiDB YugaByte DB

Throughput

Peak Throughput (ops)



Workload C - Read

207.4

51.1
24.9

0

50

100

150

200

250

CockroachDBB TiDB YugaByte DB

Latency

Average Latency (ms)

4836.2

1956.1

3635.8

0

1000

2000

3000

4000

5000

6000

CockroachDBB TiDB YugaByte DB

Throughput

Peak Throughput (ops)



Workload D - Read

206.3

23.5 23.5

0

50

100

150

200

250

CockroachDBB TiDB YugaByte DB

Latency

Average Latency (ms)

4467

3861.1 3815.8

3400

3600

3800

4000

4200

4400

4600

CockroachDBB TiDB YugaByte DB

Throughput

Peak Throughput (ops)



337.6

46
25.5

0

50

100

150

200

250

300

350

400

CockroachDBB TiDB YugaByte DB

Latency

Average Latency (ms)

238.3

203.4 201.5

180

190

200

210

220

230

240

250

CockroachDBB TiDB YugaByte DB

Throughput

Peak Throughput (ops)

Workload D - Insert



Workload E - Scan

926.2

316.5

0

200

400

600

800

1000

CockroachDBB TiDB YugaByte DB

Latency

Average Latency (ms)

106.6

30.5

0

20

40

60

80

100

120

CockroachDBB TiDB YugaByte DB

Throughput

Peak Throughput (ops)



209

201.7

198

200

202

204

206

208

210

CockroachDBB TiDB YugaByte DB

Latency

Average Latency (ms)

6

1.6

0

1

2

3

4

5

6

7

CockroachDBB TiDB YugaByte DB

Throughput

Peak Throughput (ops)

Workload E - Insert



• All databases do not perform as well as they 
would if they run on a dedicated VM cluster 
with the same spec.

• All databases perform very well on read 
operations, especially in read-heavy 
workload (Workload B and Workload C).

• All databases perform fairly well on update 
operations in update-heavy workload 
(Workload A) but not so much in read-
heavy workload (Workload B).

Discussions (1)



• All databases perform fairly well on insert 
operations in read-heavy workload 
(Workload D), but perform poorly in scan-
heavy workload (Workload E).

• All databases does not perform well in scan 
operations in scan-heavy workload 

(Workload E).

Discussions (2)



For further study, we recommend the 
following:
• Figure out the bottleneck that prevent 

databases to perform as well as they do in 
dedicated VM cluster instead of on top of 
Kubernetes cluster

• Communicate closely with engineers from 
respective database to gain more insights 
on how to fine tune each database

Further Study



Q & A



Gracias!


