
etcd, What’s next for
cluster management?

Gyuho Lee leegyuho@amazon.com
Sam Batschelet sbatsche@redhat.com

Agenda

Challenges in etcd cluster management

Can we do better? Yes!

etcd is distributed

- Distributed (typically 3 or 5 nodes)

- Consistent + Partition Tolerant + (Highly) Available, in CAP theorem

- Strong(Sequential) Consistency (NOT eventual consistency)

- Consensus over Raft

Challenge #1

etcd Membership Reconfiguration

Disruptive membership reconfiguration

Cluster with new member is more vulnerable to leadership election

Network Partition Will Happen!

Quorum size = (cluster size / 2) + 1

Leadership election WILL NOT happen!

https://blog.github.com/2018-10-21-october21-incident-report/

Network Partition Will Happen!

Leadership election WILL happen!

What if leader gets isolated?

https://blog.github.com/2018-10-21-october21-incident-report/

Network Partition + Membership Reconfiguration

This is OK

https://blog.github.com/2018-10-21-october21-incident-report/

Network Partition + Membership Reconfiguration

This is NOT OK

https://blog.github.com/2018-10-21-october21-incident-report/

Network Partition + Membership Reconfiguration

This is NOT OK

https://blog.github.com/2018-10-21-october21-incident-report/

Disruptive membership reconfiguration

Member add operation is 2-step process

Quorum size = (cluster size / 2) + 1

Disruptive membership reconfiguration

Member add operation can increase the quorum size

Quorum size = (cluster size / 2) + 1

Disruptive membership reconfiguration

Quorum size = (cluster size / 2) + 1

Introducing etcd Raft Learner

Raft Learner (etcd v3.4, 2019)

Learner joins as a non-voting member, does not count in quorum

Raft Learner (etcd v3.4, 2019)

Learner joins as a non-voting member, does not count in quorum

Raft Learner (etcd v3.4, 2019)

etcd server will validate "promote" request

Raft Learner (etcd v3.4, 2019)

Learner rejects all reads and writes (for simplest implementation possible)

Challenge #2

Persistent and durable etcd clusters

with etcd operator

etcd operator

etcd operator

Operator Components

● Custom Resource Definition (CRD)

● Custom Controller

etcd operator

Install etcd operator

etcd operator

Deployment installs three CRDs

etcd operator

Define desired state

● Desired State: 3 node etcd cluster
running v3.3.10

● Controller tasks
○ Define etcd configuration

necessary to facilitate a 3 node
cluster

○ Schedule 3 Pods on Kubernetes
using v3.3.10 containers

etcd operator

Create 3 node EtcdCluster

etcd operator

Cluster is running with 3 nodes

etcd operator

Cluster member list sanity check

etcd operator

First node is a single node cluster

etcd operator

Second node joins existing cluster, smart!

etcd operator

Single node failure case

● One member fails
● Quorum is still maintained
● Controller tasks

○ Add new member with
MemberAdd

○ Remove failed member with
MemberRemove

○ Define proper etcd configuration
○ Schedule new pod

etcd operator

pkg/cluster/reconcile.go

Operator tasks, MemberAdd and createPod

etcd operator

Cluster healed

● Operator worked as expected and
solved cluster state.

● Eliminated an otherwise manual
process.

● Success!

etcd operator

Multi node failure

● Multiple members fail
● Quorum is lost
● Controller tasks

○ Cluster API not enough to
resolve failed cluster

● Solution: Snapshot restore,
configure and start new cluster
○ Possible data loss.

● Result: Failure :(

PersistentVolume Support

etcd operator

etcd operator

PersistentVolumes

● Initail support added added via PR
#1861

● Adds persistence to data-dir
outside life of pod

● Controller
○ Recycle vs RemoveMember?

etcd operator

Multi node failure and recovery

● Quorum would be lost
● Next step would involve restore

from snapshot (manual).
● Controller tasks

○ Stop and remove all pods
○ Recreate all Pods using same

name and reuse PVC.
● Result: Healthy cluster :)

etcd operator

Future Goals

● Solve PV/PVC corner cases
● Add etcd learner node support
● 1.0 release!

Challenge #3

etcd Upgrade

How does etcd upgrade work?

1. Leader fetches server versions from each peer

2. Leader picks the lowest version as cluster version

3. Leader broadcasts it to peers

4. Each peer tries to apply that cluster version

5. Fail if requested cluster version is downgrade

Upgrade must happen incrementally, one by one (rolling upgrade)

etcd maintains cluster version

etcd maintains cluster version

Introducing etcd Server Downgrade

Downgrade (etcd v3.4, 2019)

(Similar to etcd rolling upgrade)

"downgrade" command to temporarily whitelist a lower version:

etcdctl downgrade --target-version [TARGET_VERSION]
etcdctl downgrade status
etcdctl downgrade cancel

See github.com/etcd-io/etcd/issues/9306 for more detail.

(Credits to github.com/wenjiaswe at Google)

https://github.com/etcd-io/etcd/issues/9306

Challenge #4

Extensible Discovery

Challenge #4

etcd SRV Discovery

Introducing clientv3 cluster init
Feature state: initial proposal

Cluster init: Proposal

What if...

This was a multi node bootstrap configuration

● Static configuration
○ No server name
○ No IPs or domain names
○ Reusable

● Simplify Deployment
○ Discovery completed before

etcd starts
● External discovery process

○ Client side
○ Easy to extend

Cluster init: Usage

● Client

○ etcdctl --cluster-init --discovery-srv=hexfusion.local

■ PeerURLs, ClientURLs and Name

■ Value persisted to store for member bucket

● Server

○ --initial-cluster-config exiting

■ Read values from store if they exist

■ Fall back to existing functionality

Cluster init: Layers

Cluster init: Use case

etcd operator PVC init container

● Bootstrap large cluster quickly
● Currently each node must start and

join cluster before the next Pod
starts

● With init container bootstrap N
nodes all at the same time!

Thank You!

