
Using gRPC for Long-lived 
and Streaming RPCs
Eric Anderson, Staff Software Engineer, Google



Have used gRPC
• Made a service
• Wrote some clients

Interested in more advanced use-cases

Intended Audience

2



Overview

Long-lived RPCs
Streaming RPCs
• Half Duplex
• Full Duplex

Long-lived Streaming RPCs

3



Overview

Long-lived RPCs
Streaming RPCs
• Half Duplex
• Full Duplex

Long-lived Streaming RPCs

4



Long-lived RPCs

RPCs that last minutes, hours, days

5



Long-lived RPC Use-cases

Reduce polling, reduced latency; "Hanging GET"
• Watches/notifications

6



Long-lived RPC Issues

Load balancing
• Uneven backend memory usage
• MAX_CONNECTION_AGE can accumulate connections

Network failures happen; TCP disconnects will fail calls*
Network failures take time to be detected
Deadline not as useful*

* Issues we get to live with
7

https://github.com/grpc/proposal/blob/master/A9-server-side-conn-mgt.md#proposal


Long-lived RPC Improvements

Load balancing: Have server occasionally close RPC
• If using MAX_CONNECTION_AGE, can use 

MAX_CONNECTION_AGE_GRACE to auto-kill as a back-up
Detect network failures: Client-side Keepalive

May find wait-for-ready useful

8

https://github.com/grpc/proposal/blob/master/A9-server-side-conn-mgt.md#proposal
https://github.com/grpc/grpc/blob/master/doc/wait-for-ready.md


Overview

Long-lived RPCs
Streaming RPCs
• Half Duplex
• Full Duplex

Long-lived Streaming RPCs

9



Streaming RPCs

Zero-to-many messages (instead of one)
Messages are ordered
Streaming is independent in each direction

10



Streaming RPCs (Unary)

11

Msg Method+
HeadersHalf close

Client Server

Msg Status+
TrailersHeaders



Streaming RPCs (Streaming)

12

Msg MsgMsg Method+
HeadersHalf close

Client Server

Msg MsgMsg Status+
TrailersHeaders



Streaming RPCs

rpc           UnaryCall       (Request) returns        (Response);

rpc ClientStreamingCall(stream Request) returns        (Response);

rpc ServerStreamingCall       (Request) returns (stream Response);

rpc   BidirectionalCall(stream Request) returns (stream Response);

13



Streaming RPCs

14

Bidirectional (Bidi) Streaming
• Half duplex. Client-streaming + Server-streaming
• Full duplex. More that one side can send at a time

• Like TCP, but with messages instead of bytes
(close semantics are a bit different, though)

• No implicit acks; writes are only acked by responses



Overview

Long-lived RPCs
Streaming RPCs
• Half Duplex
• Full Duplex

Long-lived Streaming RPCs

15



Half-duplex Streaming Use-cases

Latency or memory reduction (e.g., speech to text)
• multiple small messages instead of a big message

Separation of response and “end of call” (e.g., watches)
Flow Control (“push-back”)
• Bulk uploads without needing to optimize chunk sizes
• Less “jerky” than one-at-a-time chunking (gives “pipelining”)

16



Half-duplex Streaming Use-cases

17

Messages with state association
• Pinning to a backend
• Expands call lifetime (e.g., transactions)
• Reduced per-message setup cost (e.g., watches)
• Full-state followed by deltas (watches again...)



Half-duplex Streaming Issues

gRPC flow control may have large buffers (64 KB-4 MB)
gRPC flow control is point-to-point
Increased API complexity*
Server-streaming may require application-level retries*

(vs framework-level)
Tracing/stats muddled or missing

18



Half-duplex Streaming Improvements

19

Flow control problems:
use full duplex + application-level flow control

Tracing/stats: treating like unary could work okay



Overview

Long-lived RPCs
Streaming RPCs
• Half Duplex
• Full Duplex

Long-lived Streaming RPCs

20



Full-duplex Streaming Use-cases

TCP with messages
• Custom protocols

Application-level flow control (e.g., “messages,” “work items”)
Transactions
“Live” Reconfiguration
Bulk uploads, with reduced frequency of resumption

Use half-close to “hang up” instead of cancel

21



Full-duplex Streaming Issues

Tracing/stats systems may be overly simplistic*
API/protocol complexity*
Involved application-level retry*
Flow-control-induced deadlocking
Lack of REST conversion*

22



Full-duplex Streaming Improvements

23

Have at least one side be reading at any time
• If mixing control and data messages, use application-level flow 

control to limit memory usage



Overview

Long-lived RPCs
Streaming RPCs
• Half Duplex
• Full Duplex

Long-lived Streaming RPCs

24



Long-lived Streaming Issues

Load balancing (memory+cpu)
Tracing/stats systems may be overly simplistic*

25



Long-lived Streaming Improvements

26

Load balancing: same as long-lived RPCs



Q&A

GitHub/Gitter: @ejona86
Email: ejona@google.com (please CC mailing list)
Mailing List: grpc-io@googlegroups.com
Stack Overflow: #grpc #grpc-java

27


