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Distributed Tracing: A Mental Model

● Trace: A recording of a transaction as it moves through a distributed system. 
Traces are represented as a directed acyclic graph (DAG) of Spans.

● Span: A named, timed operation representing a piece of the workflow. Spans 
have a Timestamp and a Duration, and are annotated with Tags and Logs.

● Span Context: A set of Trace Identifiers injected into each network request, 
which the next service will extract and use in order to propagate the trace.
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Distributed Tracing: Trace-Data

type Trace {
  repeated Span spans
}

type Span {
  required string traceID
  required string spanID
  required string operationName
  required int startTime
  required int endTime
  repeated Reference references
  repeated Tag tags
  repeated Log logs
}

type HttpClientTag : Tag {
  required string url
  required string httpmethod
  optional int statusCode
  repeated KeyValuePair requestheaders
  repeated KeyValuePair responseheaders
}

type DbClientTag : Tag {
  required string dbType                   
  required string dbInstance                   
  required string user                      
  required string statement
}



Distributed Tracing: New Test Flow

Trace Tests

● Define Model
● Gather Data
● Check Model

Unit Tests

● Before/Setup
● Test/Run
● After/Reset



Example: Modeling a Bank Withdrawal

● We’re building a bank...

● We want to ensure that accounts cannot withdraw more 
money than they contain.

● Let’s define a test for this!



Example: Modeling a Bank Withdrawal

model = NewModel()
model(“Accounts cannot withdraw more than their balance”)
     .When(

LessThan(
Span.Name(“fetch-balance”).Tag(“amount”),
Span.Name(“withdrawal”).Tag(“amount”)))

     .Expect( Span.Name(“rollback”) )
     .NotExpect( Span.Name(“commit”) )
     .Expect( Span.Name(“/:account/withdrawl/”)
                  .HttpStatusCode(500))

Check(model, testData)



Example: Unit Test

Bank API MockDB

tracer = NewMockTracer()
mockDB = NewMockDatabase()
bankServer = 
  NewBankAPI(tracer, MockDB)

account = 123

mockDB.getBalanceReturns(300)

bankServer.withdraw(account,500)

testData = tracer.GetData()
Mock
Tracer



Example: Modeling a Bank Withdrawal

model = NewModel()
model(“Accounts cannot withdraw more than their balance”)
     .When(

LessThan(
Span.Name(“fetch-balance”).Tag(“amount”),
Span.Name(“withdrawal”).Tag(“amount”)))

     .Expect( Span.Name(“rollback”) )
     .NotExpect( Span.Name(“commit”) )
     .Expect( Span.Name(“/:account/withdrawl/”)
                  .HttpStatusCode(500))

Check(model, testData)



Example: Integration Test

Bank API MySQLclient

exec(`start trace_collector`)
exec(`start bank`)
exec(`start mysql`)
exec(`setup_test_db`)

account = 123
client = 
  NewClient(“localhost”, account)

balance = client.balance()
client.withdraw(balance*2)

testData =
  fetchTraceData(“localhost”)

exec(`stop bank`)
exec(`stop mysql`)
exec(`stop trace_collector`)

Trace Collector



Example: Modeling a Bank Withdrawal

model = NewModel()
model(“Accounts cannot withdraw more than their balance”)
     .When(

LessThan(
Span.Name(“fetch-balance”).Tag(“amount”),
Span.Name(“withdrawal”).Tag(“amount”)))

     .Expect( Span.Name(“rollback”) )
     .NotExpect( Span.Name(“commit”) )
     .Expect( Span.Name(“/:account/withdrawl/”)
                  .HttpStatusCode(500))

Check(model, testData)



Example: Production Test

Bank API CloudDBclient

client = 
  NewTraceClient(“api.tracing.com”)

traceData = client.streamData()
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Example: Modeling a Bank Withdrawal

model = NewModel()
model(“Accounts cannot withdraw more than their balance”)
     .When(

LessThan(
Span.Name(“fetch-balance”).Tag(“amount”),
Span.Name(“withdrawal”).Tag(“amount”)))

     .Expect( Span.Name(“rollback”) )
     .NotExpect( Span.Name(“commit”) )
     .Expect( Span.Name(“/:account/withdrawl/”)
                  .HttpStatusCode(500))

Check(model, testData)



Formal Specification

\* Server i times out and starts a new election.

Timeout(i) == /\ state[i] \in {Follower, Candidate}

             /\ state' = [state EXCEPT ![i] = Candidate]

             /\ currentTerm' = [currentTerm EXCEPT ![i] = currentTerm[i] + 1]

             \* Most implementations would probably just set the local vote

             \* atomically, but messaging localhost for it is weaker.

             /\ votedFor' = [votedFor EXCEPT ![i] = Nil]

             /\ votesResponded' = [votesResponded EXCEPT ![i] = {}]

             /\ votesGranted'   = [votesGranted EXCEPT ![i] = {}]

             /\ voterLog'       = [voterLog EXCEPT ![i] = [j \in {} |-> <<>>]]

             /\ UNCHANGED <<messages, leaderVars, logVars>>



Formal Specification

● Modeling is difficult

● Reality is totally separate from the verified model

● Toolchain is ad-hoc, painful, unfamiliar

● The starting point feels miles away from the finish line



The starting point feels miles away from the finish line
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Formal Specification

● Modeling is difficult

○ Distributed tracing is a simple, standard model

● Reality is totally separated from the verified model

○ You are running against your actual code

● Tooling and environment is ad-hoc, unfamiliar, painful...

○ Tooling is… you guessed it...



Formal Specification: Modeling is difficult

Distributed tracing is a simple, standard model.
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Formal Specification: Reality is separate from model

Reality is extremely similar to the model.
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Formal Specification: Toolchain is ad-hoc, unfamiliar

You guessed it...



Formal Specification: Toolchain is ad-hoc, unfamiliar

model = NewModel()
model(“Accounts cannot withdraw more than their balance”)
     .When(

LessThan(
Span.Name(“fetch-balance”).Tag(“amount”),
Span.Name(“withdrawal”).Tag(“amount”)))

     .Expect( Span.Name(“rollback”) )
     .NotExpect( Span.Name(“commit”) )
     .Expect( Span.Name(“/:account/withdrawl/”)
                  .HttpStatusCode(500))

Check(model, testData)



The starting point is much closer now
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Only works if trace points are accurate

● How do we ensure trace points are 1:1 with actual code execution?
● Hmmmm…. shouldn’t we be checking that anyways?

No “outside observer”

● Can only use data from code we run 
● Can’t double check results by executing additional, non-production code
● Well, you can in test environments. But it’s artificial and perhaps misses the 

point...

Notable Issues



Why does testing matter for observability?

● Our development practices are totally divorced from our monitoring practices.

● But our monitoring practices depend on our development practices.

● Automation might help, but it’s no panacea.

● If our observability code is not helpful in development, there’s no feedback 

loop. 

● Quality always suffers.



● All test environments are artificial.

● It’s literally crazy that we don’t test (well) in production.

● Smoke tests are crude tests.

● SLOs are crude tests.

● If running your tests against production wasn’t so hard... you would do it!

● If you could easily write more production tests as part of triaging a problem… 
you would do it!

Why does this matter for development?



Data Driven Development, Data Driven Monitoring

● Trace Data is just… data.

● Trace Driven Development is really just Data Driven Development

● There is no reason you cannot write the exact same kinds of tests against 
aggregate data: resource usage, latency outliers, error rates.

● We have so many tools for analyzing structured data… let’s use them all!



What’s Next: We need Trace-Data

type Trace {
  repeated Span spans
}

type Span {
  required string traceID
  required string spanID
  required string operationName
  required int startTime
  required int endTime
  repeated Reference references
  repeated Tag tags
  repeated Log logs
}

type HttpClientTag : Tag {
  required string url
  required string httpmethod
  optional int statusCode
  repeated KeyValuePair requestheaders
  repeated KeyValuePair responseheaders
}

type DbClientTag : Tag {
  required string dbType                   
  required string dbInstance                   
  required string user                      
  required string statement
}



What’s Next: We need Trace-Data

W3C Trace-Context Working Group

● https://github.com/w3c/trace-context

● Currently defining a wire protocol for in-band context propagation.

● AKA, standard HTTP headers for distributed tracing.

● Will help enable multiple tracing systems to participate in the same trace.

● Which means you can potentially pull trace data from 3rd party services you 
connect to, and add it to your application’s trace data.

● Wait… did someone say trace data?

https://github.com/w3c/trace-context


THANKS!!!!!

Next Steps

● @tedsuo on twitter for updates.

● Help make Trace-Data real!

● Play with trace-based testing interfaces.

● Experiment with temporal logic, model checkers, and other fun.

● Let me know what you’re up to and I’ll retweet it.

https://twitter.com/tedsuo

