
Trace Driven Testing
Ted Young, LightStep

Distributed Tracing: A Mental Model

● Trace: A recording of a transaction as it moves through a distributed system.
Traces are represented as a directed acyclic graph (DAG) of Spans.

● Span: A named, timed operation representing a piece of the workflow. Spans
have a Timestamp and a Duration, and are annotated with Tags and Logs.

● Span Context: A set of Trace Identifiers injected into each network request,
which the next service will extract and use in order to propagate the trace.

tag log log

tag log

log

Root Span Span Context

Child Span

Child Span

Child Span

Service BNetwork CallService A

Jaeger
LightStep

Your Service Spanner
S3

Kinesis

StackDriver
XRay

Open
Tracing

Trace-Context

Trace-Data

Trace-Data Trace Data

Shared
Libraries

Distributed Tracing: An Architectural Model

Jaeger
LightStep

Your Service Spanner
S3

Kinesis

StackDriver
XRay

Open
Tracing

Trace-Context

Trace-Data

Trace-Data Trace Data

Shared
Libraries

Distributed Tracing: An Architectural Model

Distributed Tracing: Trace-Data

type Trace {
 repeated Span spans
}

type Span {
 required string traceID
 required string spanID
 required string operationName
 required int startTime
 required int endTime
 repeated Reference references
 repeated Tag tags
 repeated Log logs
}

type HttpClientTag : Tag {
 required string url
 required string httpmethod
 optional int statusCode
 repeated KeyValuePair requestheaders
 repeated KeyValuePair responseheaders
}

type DbClientTag : Tag {
 required string dbType
 required string dbInstance
 required string user
 required string statement
}

Distributed Tracing: New Test Flow

Trace Tests

● Define Model
● Gather Data
● Check Model

Unit Tests

● Before/Setup
● Test/Run
● After/Reset

Example: Modeling a Bank Withdrawal

● We’re building a bank...

● We want to ensure that accounts cannot withdraw more
money than they contain.

● Let’s define a test for this!

Example: Modeling a Bank Withdrawal

model = NewModel()
model(“Accounts cannot withdraw more than their balance”)
 .When(

LessThan(
Span.Name(“fetch-balance”).Tag(“amount”),
Span.Name(“withdrawal”).Tag(“amount”)))

 .Expect(Span.Name(“rollback”))
 .NotExpect(Span.Name(“commit”))
 .Expect(Span.Name(“/:account/withdrawl/”)
 .HttpStatusCode(500))

Check(model, testData)

Example: Unit Test

Bank API MockDB

tracer = NewMockTracer()
mockDB = NewMockDatabase()
bankServer =
 NewBankAPI(tracer, MockDB)

account = 123

mockDB.getBalanceReturns(300)

bankServer.withdraw(account,500)

testData = tracer.GetData()
Mock
Tracer

Example: Modeling a Bank Withdrawal

model = NewModel()
model(“Accounts cannot withdraw more than their balance”)
 .When(

LessThan(
Span.Name(“fetch-balance”).Tag(“amount”),
Span.Name(“withdrawal”).Tag(“amount”)))

 .Expect(Span.Name(“rollback”))
 .NotExpect(Span.Name(“commit”))
 .Expect(Span.Name(“/:account/withdrawl/”)
 .HttpStatusCode(500))

Check(model, testData)

Example: Integration Test

Bank API MySQLclient

exec(`start trace_collector`)
exec(`start bank`)
exec(`start mysql`)
exec(`setup_test_db`)

account = 123
client =
 NewClient(“localhost”, account)

balance = client.balance()
client.withdraw(balance*2)

testData =
 fetchTraceData(“localhost”)

exec(`stop bank`)
exec(`stop mysql`)
exec(`stop trace_collector`)

Trace Collector

Example: Modeling a Bank Withdrawal

model = NewModel()
model(“Accounts cannot withdraw more than their balance”)
 .When(

LessThan(
Span.Name(“fetch-balance”).Tag(“amount”),
Span.Name(“withdrawal”).Tag(“amount”)))

 .Expect(Span.Name(“rollback”))
 .NotExpect(Span.Name(“commit”))
 .Expect(Span.Name(“/:account/withdrawl/”)
 .HttpStatusCode(500))

Check(model, testData)

Example: Production Test

Bank API CloudDBclient

client =
 NewTraceClient(“api.tracing.com”)

traceData = client.streamData()

Tracing SaaS

Bank API
Bank API

Bank API
Bank API

client
client

client
CloudDB

CloudDB
CloudDB

CloudDBclient
client Bank API

Example: Modeling a Bank Withdrawal

model = NewModel()
model(“Accounts cannot withdraw more than their balance”)
 .When(

LessThan(
Span.Name(“fetch-balance”).Tag(“amount”),
Span.Name(“withdrawal”).Tag(“amount”)))

 .Expect(Span.Name(“rollback”))
 .NotExpect(Span.Name(“commit”))
 .Expect(Span.Name(“/:account/withdrawl/”)
 .HttpStatusCode(500))

Check(model, testData)

Formal Specification

* Server i times out and starts a new election.

Timeout(i) == /\ state[i] \in {Follower, Candidate}

 /\ state' = [state EXCEPT ![i] = Candidate]

 /\ currentTerm' = [currentTerm EXCEPT ![i] = currentTerm[i] + 1]

 * Most implementations would probably just set the local vote

 * atomically, but messaging localhost for it is weaker.

 /\ votedFor' = [votedFor EXCEPT ![i] = Nil]

 /\ votesResponded' = [votesResponded EXCEPT ![i] = {}]

 /\ votesGranted' = [votesGranted EXCEPT ![i] = {}]

 /\ voterLog' = [voterLog EXCEPT ![i] = [j \in {} |-> <<>>]]

 /\ UNCHANGED <<messages, leaderVars, logVars>>

Formal Specification

● Modeling is difficult

● Reality is totally separate from the verified model

● Toolchain is ad-hoc, painful, unfamiliar

● The starting point feels miles away from the finish line

The starting point feels miles away from the finish line

Setup
bizzare
toolchain

Learn new
syntax

Define
models

Correlate
model with
reality

Make
assertions

Fix things

Formal Specification

● Modeling is difficult

○ Distributed tracing is a simple, standard model

● Reality is totally separated from the verified model

○ You are running against your actual code

● Tooling and environment is ad-hoc, unfamiliar, painful...

○ Tooling is… you guessed it...

Formal Specification: Modeling is difficult

Distributed tracing is a simple, standard model.

tag log log

tag log

log

Root Span Span Context

Child Span

Child Span

Child Span

Formal Specification: Reality is separate from model

Reality is extremely similar to the model.

Bank API CloudDBclient
Bank API

Bank API
Bank API

Bank API

client
client

client
CloudDB

CloudDB
CloudDB

CloudDBclient
client Bank API

Formal Specification: Toolchain is ad-hoc, unfamiliar

You guessed it...

Formal Specification: Toolchain is ad-hoc, unfamiliar

model = NewModel()
model(“Accounts cannot withdraw more than their balance”)
 .When(

LessThan(
Span.Name(“fetch-balance”).Tag(“amount”),
Span.Name(“withdrawal”).Tag(“amount”)))

 .Expect(Span.Name(“rollback”))
 .NotExpect(Span.Name(“commit”))
 .Expect(Span.Name(“/:account/withdrawl/”)
 .HttpStatusCode(500))

Check(model, testData)

The starting point is much closer now

Setup
bizzare
toolchain

Learn new
syntax

Define
models

Correlate
model with
reality

Make
assertions

Fix things

Only works if trace points are accurate

● How do we ensure trace points are 1:1 with actual code execution?
● Hmmmm…. shouldn’t we be checking that anyways?

No “outside observer”

● Can only use data from code we run
● Can’t double check results by executing additional, non-production code
● Well, you can in test environments. But it’s artificial and perhaps misses the

point...

Notable Issues

Why does testing matter for observability?

● Our development practices are totally divorced from our monitoring practices.

● But our monitoring practices depend on our development practices.

● Automation might help, but it’s no panacea.

● If our observability code is not helpful in development, there’s no feedback

loop.

● Quality always suffers.

● All test environments are artificial.

● It’s literally crazy that we don’t test (well) in production.

● Smoke tests are crude tests.

● SLOs are crude tests.

● If running your tests against production wasn’t so hard... you would do it!

● If you could easily write more production tests as part of triaging a problem…
you would do it!

Why does this matter for development?

Data Driven Development, Data Driven Monitoring

● Trace Data is just… data.

● Trace Driven Development is really just Data Driven Development

● There is no reason you cannot write the exact same kinds of tests against
aggregate data: resource usage, latency outliers, error rates.

● We have so many tools for analyzing structured data… let’s use them all!

What’s Next: We need Trace-Data

type Trace {
 repeated Span spans
}

type Span {
 required string traceID
 required string spanID
 required string operationName
 required int startTime
 required int endTime
 repeated Reference references
 repeated Tag tags
 repeated Log logs
}

type HttpClientTag : Tag {
 required string url
 required string httpmethod
 optional int statusCode
 repeated KeyValuePair requestheaders
 repeated KeyValuePair responseheaders
}

type DbClientTag : Tag {
 required string dbType
 required string dbInstance
 required string user
 required string statement
}

What’s Next: We need Trace-Data

W3C Trace-Context Working Group

● https://github.com/w3c/trace-context

● Currently defining a wire protocol for in-band context propagation.

● AKA, standard HTTP headers for distributed tracing.

● Will help enable multiple tracing systems to participate in the same trace.

● Which means you can potentially pull trace data from 3rd party services you
connect to, and add it to your application’s trace data.

● Wait… did someone say trace data?

https://github.com/w3c/trace-context

THANKS!!!!!

Next Steps

● @tedsuo on twitter for updates.

● Help make Trace-Data real!

● Play with trace-based testing interfaces.

● Experiment with temporal logic, model checkers, and other fun.

● Let me know what you’re up to and I’ll retweet it.

https://twitter.com/tedsuo

