



#### KubeCon | CloudNativeCon

North America 2018

# Switching the Engine CoreDNS © Kubernetes





#### KubeCon | C

CloudNativeCon

North America 2018

#### **Jake Sanders**

Contributor: Kubernetes SWE: GKE Security () @dekkagaijin

#### **Michael Grosser**

Maintainer: CoreDNS | Contributor: K8s Founder: Okkur Labs & Rekkur Solutions @stp\_ip @stp-ip

## Agenda



- Background
- NodeLocal Caching
- Local Benchmarks
- Cluster Benchmarks
- e2e Application Benchmarks
- Outlook
- Questions





#### KubeCon CloudNativeCon

North America 2018 -

# Background





- Bundle of dnsmasq + <u>SkyDNS</u>
- SkyDNS written in Go by <u>Miek Gieben</u> and others\*
- Partly maintained

\*Erik st. Martin, Brian Ketelsen, Michael Crosby

## **CoreDNS History**



- Authored by Miek Gieben
- Based on <u>Caddy</u> (Golang webserver)
- Plugin-based architecture for extensibility++
- GA in 1.11, default in 1.13

- GRPC (DoG?) (RFCs: none)
- HTTPS (DoH) (RFC <u>8484</u>)
- TLS (DoT) (RFCs: <u>7858</u>, <u>8310</u>)
- TCP (RFC <u>7766</u>)
- UDP(RFCs: <u>1034</u>, <u>1035</u>, <u>etc.</u>)











#### KubeCon CloudNativeCon

North America 2018

# NodeLocal caching

Huge thanks: <u>Pavithra Ramesh</u>, GKE Networking





• Standards from 70s & 80s

"Aaaand it's gone" - South Park

- Assumption of most DNS records being ~static
- Congestion + availability > consistency + reliability
- Old decisions can't keep up w/ new usage patterns





- Requests generally occur over UDP, except under special circumstances. Per <u>RFC1035 4.2</u>:
  - "The DNS assumes that messages will be transmitted as datagrams (UDP) or in a byte stream carried by a virtual circuit (TCP). While virtual circuits can be used for any DNS activity, datagrams are preferred for queries due to their lower overhead and better performance."
  - "Depending on how well connected the client is to its expected servers, the minimum retransmission interval should be 2-5 seconds."



#### timeout:n

Sets the amount of time the resolver will wait for a response from a remote name server before retrying the query via a different name server ... Measured in **seconds**, the default is RES\_TIMEOUT (**currently 5**, see <resolv.h>) ...

#### attempts:n

Sets the number of times the resolver will send a query to its name servers before giving up ... The default is RES\_DFLRETRY (**currently 2**, see <resolv.h>).

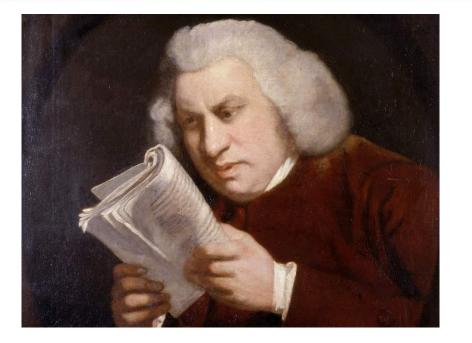
### conntrack limits & races



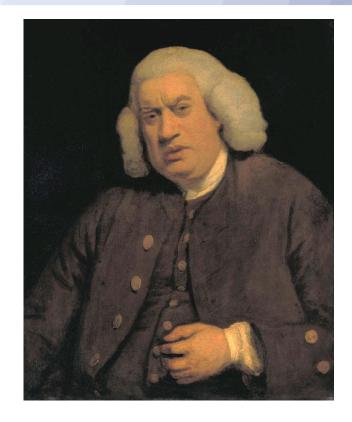
- Cluster DNS is a k8s **Service**
- DNAT rules used to translate ClusterIP to Pod IP
- conntrack table usually limited to 65536 entries
   => dropped packets
- Multiple conntrack table entries per 'connection' (including UDP)
  - No UDP 'close'  $\rightarrow$  entries persist long after they're useful

### conntrack limits & races

 KubeCon
 CloudNativeCon


 North America 2018

- multiple UDP reqs from the same ip:port can results in race conditions
   => dropped packets
- Races aggravated by parallelized reqs for different record types (e.g. A, AAAA)
- N search paths mean N times more requests for failed queries



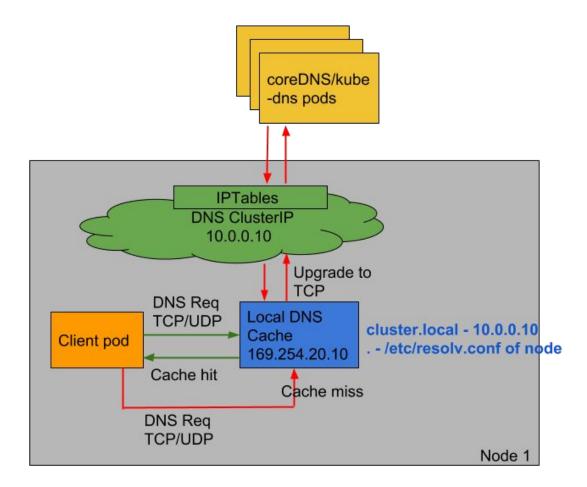

## We've All Been There





nf\_conntrack: table full, dropping packet




### Enter: NodeLocal DNS Cache

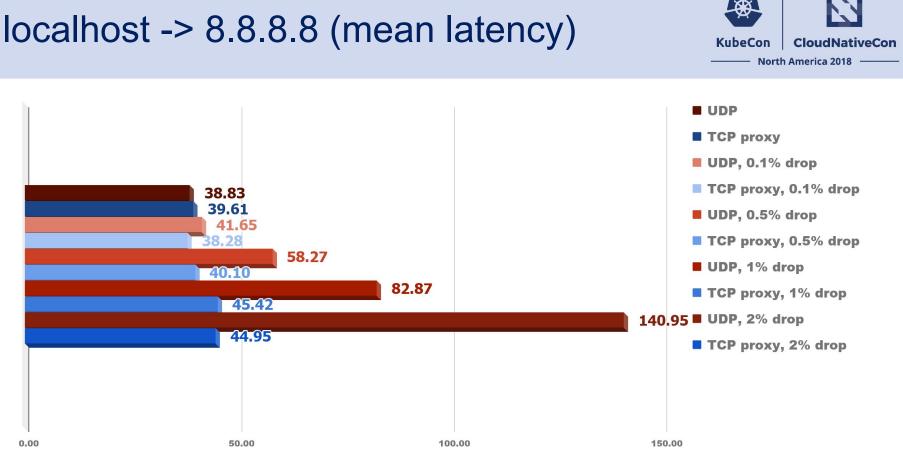


Coming soon (optionally) to a <u>1.13</u> cluster near you!

Runs on every node, serves DNS for pods that are using cluster DNS.

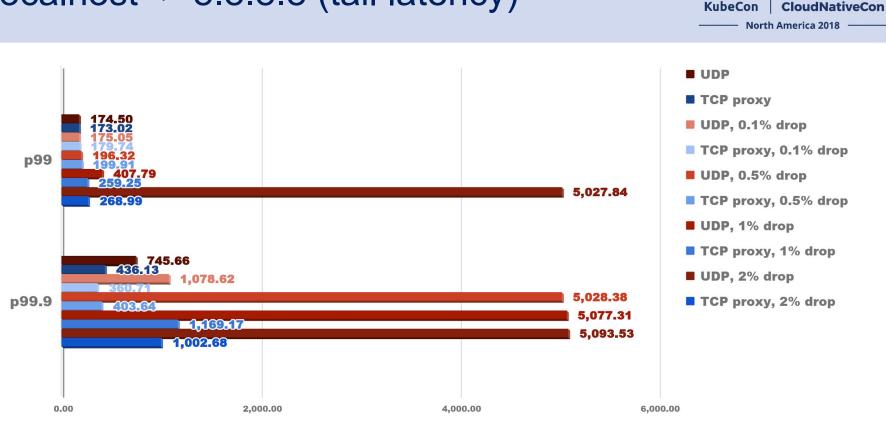
- Improve latency by reducing communication over the network
- Skips conntrack for pod-cache connection
  - Less dropped packets!
- Proxy queries over TCP (and preserves the connection)
  - DARPA-grade reliability & consistency!
  - Even less pressure on the cluster DNS's conntrack tables (see above)
- Node-level DNS metrics








#### KubeCon CloudNativeCon


North America 2018

# Local Benchmarks



latency (ms)

#### Code @ https://github.com/dekkagaijin/coredns-demo/



latency (ms)

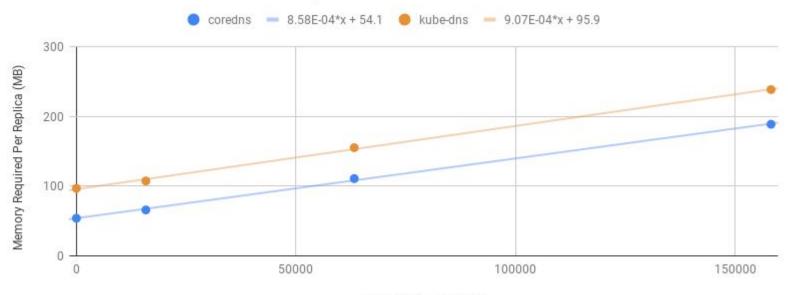
## localhost -> 8.8.8.8 (tail latency)





#### KubeCon | CloudNativeCon

North America 2018


# **Cluster DNS Benchmarking**

Huge thanks: <u>Chris O'Haver</u>, Infoblox

# CoreDNS vs Kube-DNS: Memory



CoreDNS vs Kube-DNS Est Memory at Scale



Total Pods + Services

#### Credit: Chris O'Haver, Infoblox

## CoreDNS vs Kube-DNS: Queries



| DNS Server | Query Type | QPS   | Avg Latency (ms) |
|------------|------------|-------|------------------|
| CoreDNS    | external   | 6733  | 12.02            |
| CoreDNS    | internal   | 33669 | 2.608            |
| Kube-dns   | external   | 2227  | 41.585           |
| Kube-dns   | internal   | 36648 | 2.639            |

Credit: Chris O'Haver, Infoblox





#### KubeCon CloudNativeCon

North America 2018

# **Application Benchmarks**

## **Our application: TXTDirect**



- DNS <u>TXT record</u>-based redirects
- Control over your entrypoint and data
- Open Source based on Caddy
- Does a lot of DNS requests

## **TXTDirect:** Request flow



"GET" kubernetes.opensourcesoftware.rocks

"A/AAAA/CNAME" for kubernetes.opensourcesoftware.rocks

TXT for \_redirect.kubernetes.opensourcesoftware.rocks

"v=txtv0;type=host;to=https://kubernetes.io"

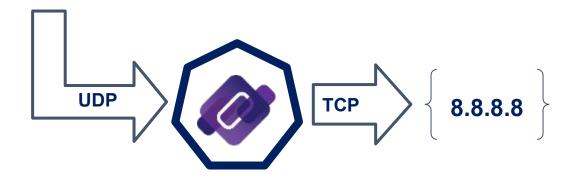


Learn more on txtdirect.org

## Setup: Standard Kube-dns



# 




Pod, UDP  $\rightarrow$  Kube-dns

## Setup: Standard CoreDNS



# 

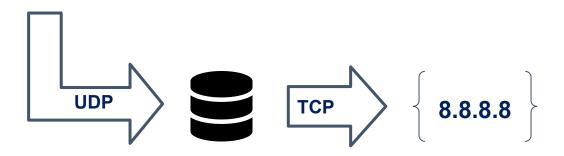


#### Pod, UDP $\rightarrow$ CoreDNS, TCP $\rightarrow$ 8.8.8.8

## Setup: NodeLocal cluster



# 

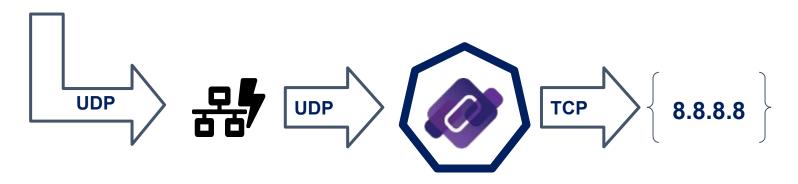



Pod, UDP  $\rightarrow$  NL, TCP  $\rightarrow$  CoreDNS, TCP  $\rightarrow$  8.8.8.8

## Setup: NodeLocal direct



# 

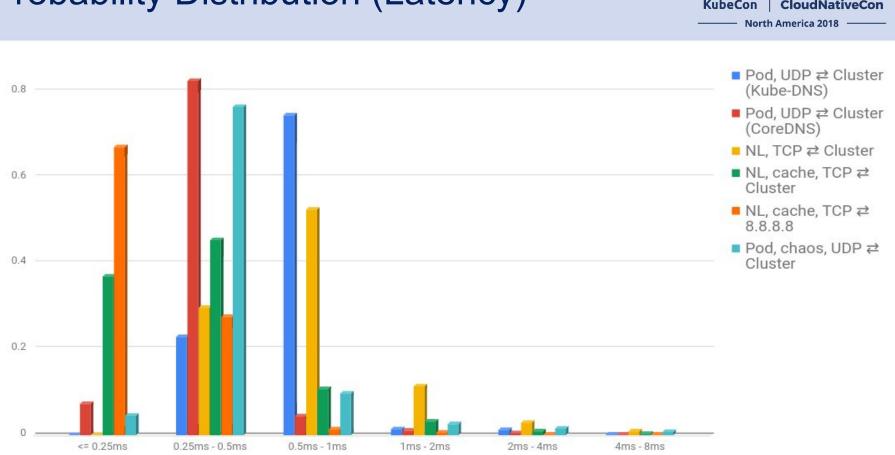



#### Pod, UDP $\rightarrow$ NL, TCP $\rightarrow$ 8.8.8.8



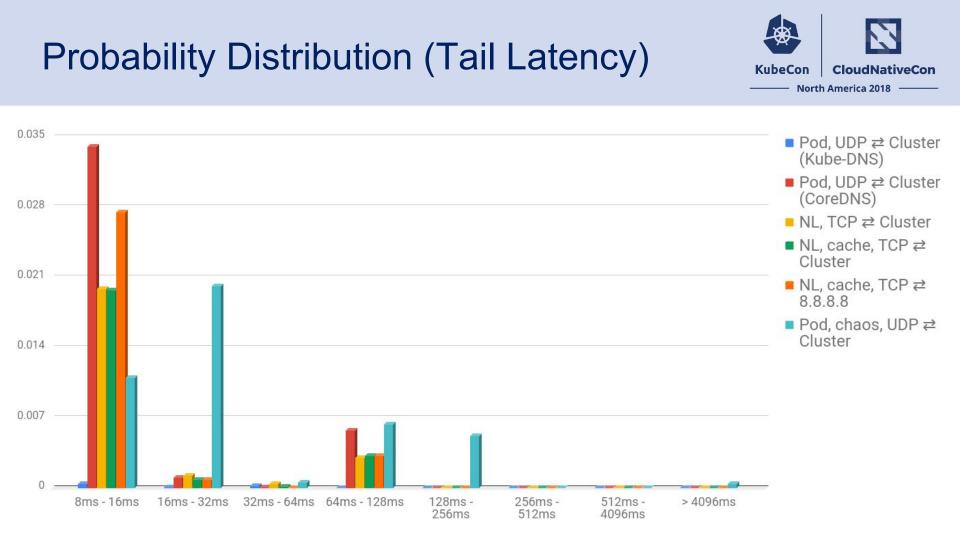


# 




Pod, chaos, UDP  $\rightarrow$  CoreDNS

## Show me the numbers!








## **Probability Distribution (Latency)**

KubeCon CloudNativeCon



## What we learned



- TCP does what it's supposed to
- TCP forwarding improves the performance of traditional (UDP) clients, with less variance, and without incurring a ton of overhead
- CoreDNS's plugins make it a good fit for special use-cases





#### KubeCon CloudNativeCon

North America 2018 -

# Outlook





- Native DNS over GRPC
- Watch based DNS records
- Performance and reliability improvements
- Ideas? Let us know after the talk!





## **Thank You!**



Michael Grosser @stp\_ip <u>stp-ip.net</u>



Jake Sanders @dekkagaijin jsand@google.com

# Drinks...



