
Shopify’s $25K
Bug Report
and the cluster takeover
that didn’t happen

Shane Lawrence
Security Infrastructure Engineer
Twitter: @shaneplawrence
Github: @shane-lawrence
Shopify

Greg Castle
GKE Security Tech Lead
Twitter: @mrgcastle
Github: @destijl
Google

North America 2018

A production security story

Introduction Bug report Detection TakeawaysExchange Attack & defense

Introduction

Who is shopify.com?
2017 data

Shopify’s background

600K+
merchants

26B+
$processed

80K+
requests per second

peak traffic

Shopify cloud platform

• Scalable

• Application developers don’t need to learn k8

• Self-serve with guardrails & paved roads

• Security*** by default

Shopify’s bug bounty programs

• 330+ hackers over 3+ years

• Merchants and buyers protected

• $1,000,000+ paid

• hackerone.com/shopify

https://hackerone.com/shopify

Bug report

Security report and responses

7:39pm

Report (goo.gl/dqynDa)
from André Baptista
(0xacb): vuln in
Exchange app

7:50pm

Incident declared

8:00pm

Cloudsec and app dev
teams contacted

8:43pm

Merged commit to
disable vulnerable
feature

9:27pm

Investigation and
cleanup started
(rotate credentials,
contact Google,
investigate logs)

1 hour

https://goo.gl/dqynDa
https://hackerone.com/0xacb

Exchange

Image of
page

Request
screenshot

Request storefront

What is
Exchange?
Marketplace for buying
& selling stores

Webpage

3. Test store

Test store frontpage

2. Screenshot service

Headless browser

1. Exchange app

Create listing

Screenshots

Attack & defense

cluster control

X
kubeletkube-env

Google service
account token

SSRF

The attack

Security
researcher

Server Side Request Forgery (SSRF)

Attack:
Weaponize SSRF
Existing workflow

Image of
page

Request
screenshot

Request storefront

2. Screenshot service

Headless browser

1. Exchange app

Create listing

Screenshots

Webpage

4. Metadata service

3. Test store

Test store frontpage

Webpage

4. Metadata service

1. Exchange app

Create listing

Screenshots
Request

screenshot

Request storefront

3. Test store

Exploit page

2. Screenshot service

Headless browser

Attack:
Weaponize SSRF
Got token for the VM’s Google
service account

Request token
4. Metadata server

Default SA token

v1

Attack:
Weaponize SSRF
Got token for the VM’s Google
service account

1. Exchange app

Create listing

Screenshots

Webpage

Request storefront

3. Test store

Exploit page

2. Screenshot service

Headless browser

Request
screenshot

Sidebar: What is this Google SA?

Node (VM)

Metadata server

Service
account

Pod

Token

Token

Google
APIs

Demo
Token attack

403: header
required

4. Metadata server

Default SA token

v1

1. Exchange app

Create listing

Screenshots

Defense:
Require header
Metadata server requires header:
Metadata-Flavor: Google

Webpage

Request storefront

3. Test store

Exploit page

Request
screenshot

2. Screenshot service

Headless browser

Token

4. Metadata server

Default SA token

v1
v1beta1

1. Exchange app

Create listing

Screenshots

Attack: Use old
API version
Beta API: no request
header required :(

Webpage

Request storefront

3. Test store

Exploit page

Request
screenshot

2. Screenshot service

Headless browser

Image of
token

Defense: Disable old API versions

• Beta API known issue: APIs still in use

• Disabled by default in new 1.12+ clusters

• Opt-in now: “disable-legacy-endpoints=true”

• goo.gl/JsdJbL for details

http://goo.gl/JsdJbL

Defense: Least priv on token

• Default SA least privilege from 1.10+

• May vary if users have granted extra privs

• Shopify had minimal privs for log/mon/debug

• Token not useful to researcher

5. Metadata server

Default SA token

v1
v1beta1

kube-env

Request
screenshot

Request storefront

Webpage

2. Screenshot service

Headless browser

kube-env

1. Exchange app

Create listing

Screenshots

Attack: What
other metadata?
Metadata server = trust
bootstrap for nodes
Export static key from
“kube-env”

Image of
kube-env

3. Test store

Exploit page

Demo
kube-env attack

Attack: Kubelet bootstrap key

Kube-env

Security researcher machine

CA.crt client.crt client.pem GKE K8s
API Server

kubectl

Request
screenshot

Request storefront

Defense: Metadata
concealment
Now: metadata concealment
(Beta) goo.gl/u6rrMT

Future: K8s TPM trust bootstrap

Webpage

3. Test store

Exploit page

2. Screenshot service

Headless browser

403 Forbidden

4. Metadata proxy

Whitelist/blacklist

1. Exchange app

Create listing

Screenshots

5. Metadata server

Default SA token

v1
v1beta1

kube-env

http://goo.gl/u6rrMT

Defense: Minimize kubelet privs

• RBAC on (ABAC off): GKE default

• Node Authorization on: GKE default

• Audit role bindings:
GKE “kubelet-cluster-admin” (not actually

cluster admin) binding if upgraded cluster

https://kubernetes.io/docs/tasks/administer-clus
ter/securing-a-cluster/

Demo
Defenses

Detection

What’s in the logs?

• K8s API audit logs: goo.gl/d8YebH

• Content depends on audit policy

• GKE: g.co/gke/auditlogging

http://goo.gl/d8YebH
http://g.co/gke/logging

Filter logs for kubelet user

Filter logs for kubelet user

Create deployment failed

Create deployment

Exec into exchange pod

Exec into exchange pod

Node CSR creation

Takeaways

Shopify’s response

1 day
• Disable vulnerable service.

• Start rotating credentials.

• Pay $ to researcher.

1 week
• Analyze audit logs.

• Clean up RBAC.

1 month
• Prevent unwanted redirects.

• Re-enable screenshot service.

• Deploy metadata proxy.

• Pay $$$ to researcher.

• Disclose vulnerability.

Lessons learned: K8s advice

• Follow cloud provider hardening advice (GKE: g.co/gke/hardening)

• Block off/filter access to any privileged network endpoints

• Run RBAC and Node Authorization (GKE default)

• Apply least privilege for K8s service accounts

• Audit role bindings, especially upgraded clusters

• Collect API logs and have them available to query (GKE default)

http://g.co/gke/hardening

Links and references

Shopify bug bounty: hackerone.com/shopify

Bug report details: goo.gl/dqynDa

GKE disable old APIs: goo.gl/JsdJbL

GKE metadata conceal: goo.gl/u6rrMT

K8s API audit logs: goo.gl/d8YebH

GKE logging: g.co/gke/auditlogging

Shane Lawrence
Security Infrastructure Engineer
Twitter: @shaneplawrence
Github: @shane-lawrence
Shopify

Greg Castle
GKE Security Tech Lead
Twitter: @mrgcastle
Github: @destijl
Google

https://hackerone.com/shopify
https://goo.gl/dqynDa
http://goo.gl/JsdJbL
http://goo.gl/u6rrMT
http://goo.gl/d8YebH
http://g.co/gke/logging

Thank you

Reference
Log queries

Example log queries

• Broad strokes to get you started

• No standard language for queries like this

• SQL seems most standard

• But includes some BigQuery-isms for unpacking repeated fields

• Validation/tweaking on production clusters needed

• Mostly intended to point out interesting values and fields

RBAC Changes (excl system)

SELECT
 timestamp,
 protopayload_auditlog.methodName AS method,
 protopayload_auditlog.resourceName AS resource,
 protopayload_auditlog.authenticationInfo.principalEmail AS suid,
 authzinfo.granted AS granted,
 protopayload_auditlog.requestMetadata.callerIp AS saddr
FROM
`gcastle-gke-dev.kubecon2018.cloudaudit_googleapis_com_activity_*`,
UNNEST(protopayload_auditlog.authorizationInfo) AS authzinfo
WHERE
 protopayload_auditlog.methodName LIKE " io.k8s.authorization.rbac.v1%"
 AND NOT protopayload_auditlog.authenticationInfo.principalEmail LIKE " system:%"
LIMIT 100

Similarly, use these methodName strings for specific changes to roles or bindings:

“io.k8s.authorization.rbac.v1.roles.%”
“io.k8s.authorization.rbac.v1.rolebindings.%”
“io.k8s.authorization.rbac.v1.clusterroles.%”
“io.k8s.authorization.rbac.v1.clusterrolebindings.%”

Creating CSRs via K8s API

SELECT
 timestamp,
 protopayload_auditlog.methodName AS method,
 protopayload_auditlog.resourceName AS resource,
 protopayload_auditlog.authenticationInfo.principalEmail AS suid,
 authzinfo.granted AS granted,
 protopayload_auditlog.requestMetadata.callerIp AS saddr
FROM
`gcastle-gke-dev.kubecon2018.cloudaudit_googleapis_com_activity_*`,
UNNEST(protopayload_auditlog.authorizationInfo) AS authzinfo
WHERE
 protoPayload_auditlog.resourceName LIKE
"certificates.k8s.io/v1beta1/certificatesigningrequests%"
LIMIT 100

Unauth’d web requests

SELECT
 timestamp,
 protopayload_auditlog.methodName AS method,
 protopayload_auditlog.resourceName AS resource,
 protopayload_auditlog.authenticationInfo.principalEmail AS suid,
 authzinfo.granted AS granted,
 protopayload_auditlog.requestMetadata.callerIp AS saddr
FROM
`gcastle-gke-dev.kubecon2018.cloudaudit_googleapis_com_activity_*`,
UNNEST(protopayload_auditlog.authorizationInfo) AS authzinfo
WHERE
 protopayload_auditlog.authenticationInfo.principalEmail = " system:anonymous"
LIMIT 100

Kubelet bootstrap identity calls
(GKE specific)
SELECT
 timestamp,
 protopayload_auditlog.methodName AS method,
 protopayload_auditlog.resourceName AS resource,
 protopayload_auditlog.authenticationInfo.principalEmail AS suid,
 authzinfo.granted AS granted,
 protopayload_auditlog.requestMetadata.callerIp AS saddr
FROM
`gcastle-gke-dev.kubecon2018.cloudaudit_googleapis_com_activity_*`,
UNNEST(protopayload_auditlog.authorizationInfo) AS authzinfo
WHERE protopayload_auditlog.authenticationInfo.principalEmail LIKE " kubelet"
LIMIT 100

Node authenticated requests

SELECT
 timestamp,
 protopayload_auditlog.methodName AS method,
 protopayload_auditlog.resourceName AS resource,
 protopayload_auditlog.authenticationInfo.principalEmail AS suid,
 authzinfo.granted AS granted,
 protopayload_auditlog.requestMetadata.callerIp AS saddr
FROM
`gcastle-gke-dev.kubecon2018.cloudaudit_googleapis_com_activity_*`,
UNNEST(protopayload_auditlog.authorizationInfo) AS authzinfo
WHERE protopayload_auditlog.authenticationInfo.principalEmail LIKE " system:node%"
LIMIT 100

Calls outside IP range

SELECT
 timestamp,
 protopayload_auditlog.methodName AS method,
 protopayload_auditlog.resourceName AS resource,
 protopayload_auditlog.authenticationInfo.principalEmail AS suid,
 authzinfo.granted AS granted,
 protopayload_auditlog.requestMetadata.callerIp AS saddr
FROM
`gcastle-gke-dev.kubecon2018.cloudaudit_googleapis_com_activity_*`,
UNNEST(protopayload_auditlog.authorizationInfo) AS authzinfo
WHERE
NOT protopayload_auditlog.requestMetadata. callerIp="127.0.0.1"
AND NOT protopayload_auditlog.requestMetadata. callerIp="::1"
AND protopayload_auditlog.requestMetadata. callerIp NOT LIKE "8.8%"
LIMIT 100

