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Introduction



Who is shopify.com?
2017 data

Shopify’s background

600K+
merchants    

26B+
$processed   

80K+
requests per second

peak traffic



Shopify cloud platform

• Scalable

• Application developers don’t need to learn k8

• Self-serve with guardrails & paved roads

• Security*** by default



Shopify’s bug bounty programs

•   330+ hackers over 3+ years

•   Merchants and buyers protected

•   $1,000,000+ paid

•   hackerone.com/shopify

https://hackerone.com/shopify


Bug report



Security report and responses

7:39pm

Report (goo.gl/dqynDa) 
from André Baptista 
(0xacb): vuln in 
Exchange app

7:50pm

Incident declared

8:00pm

Cloudsec and app dev 
teams contacted

8:43pm

Merged commit to 
disable vulnerable 
feature

9:27pm

Investigation and 
cleanup started 
(rotate credentials, 
contact Google, 
investigate logs)

1 hour

https://goo.gl/dqynDa
https://hackerone.com/0xacb


Exchange 
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Attack & defense



cluster control

X
kubeletkube-env

Google service 
account token

SSRF

The attack

Security 
researcher



Server Side Request Forgery (SSRF)



Attack: 
Weaponize SSRF
Existing workflow
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Webpage

4. Metadata service

1. Exchange app

Create listing

Screenshots
Request 

screenshot
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Exploit page

2. Screenshot service

Headless browser

Attack: 
Weaponize SSRF
Got token for the VM’s Google 
service account



Request token
4. Metadata server

Default SA token

v1
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Weaponize SSRF
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Sidebar: What is this Google SA?

Node (VM)

Metadata server

Service 
account

Pod

Token

Token

Google
APIs



Demo
Token attack



403: header 
required

4. Metadata server

Default SA token

v1

1. Exchange app

Create listing

Screenshots

Defense:
Require header
Metadata server requires header:
Metadata-Flavor: Google

Webpage
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2. Screenshot service

Headless browser



Token

4. Metadata server

Default SA token

v1
v1beta1

1. Exchange app
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Screenshots
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header required :(
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Defense: Disable old API versions

• Beta API known issue: APIs still in use

• Disabled by default in new 1.12+ clusters

• Opt-in now: “disable-legacy-endpoints=true”

• goo.gl/JsdJbL for details

http://goo.gl/JsdJbL


Defense: Least priv on token

• Default SA least privilege from 1.10+

• May vary if users have granted extra privs

• Shopify had minimal privs for log/mon/debug

• Token not useful to researcher
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Attack: What 
other metadata?
Metadata server = trust 
bootstrap for nodes
Export static key from 
“kube-env”
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Demo
kube-env attack



Attack: Kubelet bootstrap key

Kube-env

Security researcher machine

CA.crt client.crt client.pem GKE K8s 
API Server

kubectl



Request 
screenshot

Request storefront

Defense: Metadata 
concealment
Now: metadata concealment
(Beta) goo.gl/u6rrMT

Future: K8s TPM trust bootstrap

Webpage

3. Test store

Exploit page

2. Screenshot service

Headless browser

403 Forbidden

4. Metadata proxy

Whitelist/blacklist

1. Exchange app

Create listing

Screenshots

5. Metadata server

Default SA token

v1
v1beta1

kube-env

http://goo.gl/u6rrMT


Defense: Minimize kubelet privs

• RBAC on (ABAC off): GKE default

• Node Authorization on: GKE default

• Audit role bindings: 
GKE “kubelet-cluster-admin” (not actually 

cluster admin) binding if upgraded cluster

https://kubernetes.io/docs/tasks/administer-clus
ter/securing-a-cluster/



Demo
Defenses



Detection



What’s in the logs?

• K8s API audit logs: goo.gl/d8YebH

• Content depends on audit policy

• GKE: g.co/gke/auditlogging

http://goo.gl/d8YebH
http://g.co/gke/logging


Filter logs for kubelet user



Filter logs for kubelet user



Create deployment failed



Create deployment



Exec into exchange pod



Exec into exchange pod



Node CSR creation



Takeaways



Shopify’s response

1 day
• Disable vulnerable service. 

• Start rotating credentials.

• Pay $ to researcher.

1 week
• Analyze audit logs.

• Clean up RBAC.

1 month
• Prevent unwanted redirects.

• Re-enable screenshot service.

• Deploy metadata proxy.

• Pay $$$ to researcher.

• Disclose vulnerability.



Lessons learned: K8s advice

• Follow cloud provider hardening advice (GKE: g.co/gke/hardening)

• Block off/filter access to any privileged network endpoints

• Run RBAC and Node Authorization (GKE default)

• Apply least privilege for K8s service accounts

• Audit role bindings, especially upgraded clusters

• Collect API logs and have them available to query (GKE default)

http://g.co/gke/hardening


Links and references

Shopify bug bounty: hackerone.com/shopify

Bug report details: goo.gl/dqynDa

GKE disable old APIs: goo.gl/JsdJbL

GKE metadata conceal: goo.gl/u6rrMT

K8s API audit logs: goo.gl/d8YebH

GKE logging: g.co/gke/auditlogging
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Thank you



Reference
Log queries



Example log queries

• Broad strokes to get you started

• No standard language for queries like this

• SQL seems most standard

• But includes some BigQuery-isms for unpacking repeated fields

• Validation/tweaking on production clusters needed

• Mostly intended to point out interesting values and fields



RBAC Changes (excl system)

SELECT
  timestamp,
  protopayload_auditlog.methodName AS method,
  protopayload_auditlog.resourceName AS resource,
  protopayload_auditlog.authenticationInfo.principalEmail AS suid,
  authzinfo.granted AS granted,
  protopayload_auditlog.requestMetadata.callerIp AS saddr
FROM 
`gcastle-gke-dev.kubecon2018.cloudaudit_googleapis_com_activity_*`,
UNNEST(protopayload_auditlog.authorizationInfo) AS authzinfo
WHERE
  protopayload_auditlog.methodName LIKE " io.k8s.authorization.rbac.v1%"
  AND NOT protopayload_auditlog.authenticationInfo.principalEmail LIKE " system:%"
LIMIT 100

Similarly, use these methodName strings for specific changes to roles or bindings:

“io.k8s.authorization.rbac.v1.roles.%”
“io.k8s.authorization.rbac.v1.rolebindings.%”
“io.k8s.authorization.rbac.v1.clusterroles.%”
“io.k8s.authorization.rbac.v1.clusterrolebindings.%”



Creating CSRs via K8s API

SELECT
  timestamp,
  protopayload_auditlog.methodName AS method,
  protopayload_auditlog.resourceName AS resource,
  protopayload_auditlog.authenticationInfo.principalEmail AS suid,
  authzinfo.granted AS granted,
  protopayload_auditlog.requestMetadata.callerIp AS saddr
FROM 
`gcastle-gke-dev.kubecon2018.cloudaudit_googleapis_com_activity_*`,
UNNEST(protopayload_auditlog.authorizationInfo) AS authzinfo
WHERE
  protoPayload_auditlog.resourceName LIKE 
"certificates.k8s.io/v1beta1/certificatesigningrequests%"
LIMIT 100



Unauth’d web requests

SELECT
  timestamp,
  protopayload_auditlog.methodName AS method,
  protopayload_auditlog.resourceName AS resource,
  protopayload_auditlog.authenticationInfo.principalEmail AS suid,
  authzinfo.granted AS granted,
  protopayload_auditlog.requestMetadata.callerIp AS saddr
FROM 
`gcastle-gke-dev.kubecon2018.cloudaudit_googleapis_com_activity_*`,
UNNEST(protopayload_auditlog.authorizationInfo) AS authzinfo
WHERE
  protopayload_auditlog.authenticationInfo.principalEmail = " system:anonymous"
LIMIT 100



Kubelet bootstrap identity calls 
(GKE specific)
SELECT
  timestamp,
  protopayload_auditlog.methodName AS method,
  protopayload_auditlog.resourceName AS resource,
  protopayload_auditlog.authenticationInfo.principalEmail AS suid,
  authzinfo.granted AS granted,
  protopayload_auditlog.requestMetadata.callerIp AS saddr
FROM 
`gcastle-gke-dev.kubecon2018.cloudaudit_googleapis_com_activity_*`,
UNNEST(protopayload_auditlog.authorizationInfo) AS authzinfo
WHERE protopayload_auditlog.authenticationInfo.principalEmail LIKE " kubelet"
LIMIT 100



Node authenticated requests

SELECT
  timestamp,
  protopayload_auditlog.methodName AS method,
  protopayload_auditlog.resourceName AS resource,
  protopayload_auditlog.authenticationInfo.principalEmail AS suid,
  authzinfo.granted AS granted,
  protopayload_auditlog.requestMetadata.callerIp AS saddr
FROM 
`gcastle-gke-dev.kubecon2018.cloudaudit_googleapis_com_activity_*`,
UNNEST(protopayload_auditlog.authorizationInfo) AS authzinfo
WHERE protopayload_auditlog.authenticationInfo.principalEmail LIKE " system:node%"
LIMIT 100



Calls outside IP range

SELECT
  timestamp,
  protopayload_auditlog.methodName AS method,
  protopayload_auditlog.resourceName AS resource,
  protopayload_auditlog.authenticationInfo.principalEmail AS suid,
  authzinfo.granted AS granted,
  protopayload_auditlog.requestMetadata.callerIp AS saddr
FROM 
`gcastle-gke-dev.kubecon2018.cloudaudit_googleapis_com_activity_*`,
UNNEST(protopayload_auditlog.authorizationInfo) AS authzinfo
WHERE 
NOT protopayload_auditlog.requestMetadata. callerIp="127.0.0.1"
AND NOT protopayload_auditlog.requestMetadata. callerIp="::1"
AND protopayload_auditlog.requestMetadata. callerIp NOT LIKE "8.8%"
LIMIT 100


