
Sharded And Federated
Prometheus Clusters
to Monitor Distributed
Databases
Jun Li and Viswa Vutharkar, eBay Inc.

Monitoring a Geo-Distributed Database
• NuData: A geo-distributed

database developed at eBay
• Deployment: Thousands of pods

across datacenters in eBay
internal Kubernetes based cloud
infrastructure

• Metrics monitoring: Prometheus
2.3

• Real-time monitoring for:
• System operation
• System development

The Sharded Distributed Database
• The entire database

framework supports many
keyspaces

• A keyspace consists of
multiple shards

• Each shard consists of
multiple replicas (master,
secondary, hidden)

• Replicas in each shard are
provisioned across
datacenters

Outline
• Metrics capturing and aggregation
• The Sharded and Federated Prometheus cluster
• Query routing & UI integration
• Monitoring experiences
• Conclusions

Metrics Being Monitored
• Metrics captured:

• Throughputs
• Latencies
• Errors
• Saturation (queuing)
• State (master, replica, instance up/down)

• OS metrics (from Kubernetes Kubelet) and JVM metrics
• Custom metrics export: disk IO metrics from iostat
• Total metrics captured: 20M metrics/scrape interval/per DC

• Current scrape interval at 1 minute
• Total storage size accumulated per day per DC: 195 GB
• Currently retain only 7 days of metrics data

Metric Labels & Labeling Hierarchy
• Prometheus on Kubernetes provides:

• Dynamic discovery of target
• Automatic label injection
• Target filtering by auto-discovered labels
• Re-labeling and label injection

• Metric labels:
• Labels due to physical datacenter hierarchy:

• pod, host, rack, datacenter
• Labels due to logical database hierarchy:

• replica, shard, keyspace
• All of these labels are automatically injected by Prometheus from pod spec.

Hierarchical Multi-Label Metrics Aggregation

db_processed_total (zone=“dc1”, host=“…”, rack=“…”, pod=“…”,
keyspace=“marketing”, shard=“78654”, replica=“21345”, type= “read”)

sum(rate
(db_processed_total
[5m])) by (keyspace)

sum(rate
(db_processed_total
[5m])) by (keyspace,
zone) sum(rate

(db_processed_total
[5m])) by (keyspace,
shard)

sum(rate (db_processed_total
[5m]))

sum(rate
(db_processed_total
[5m])) by (keyspace,
host)

The Need for a Scalable Cluster
• To collect 20M metric samples/minute from a single Prometheus

becomes prohibitive

• In addition, >1200 recording rules in total to support real-time
alerting and dashboards

• One metric can be tied to multiple dashboards with different hierarchical
aggregations

• The CPU consumption in Prometheus devoted to recording rules
evaluation is much more significant compared to metrics scraping

Outline
• Metrics capturing and aggregation
• The Sharded and Federated Prometheus cluster
• Query routing & UI integration
• Monitoring experiences
• Conclusions

The Distributed Database Being Monitored

• Highly available distributed
database across three DCs

• Need to have a Prometheus
setup to linearly scale with
the targets being scraped

Sharded Prometheus
- Sharded Prometheus setup

- 2 Prometheus shards
illustrated

- “Even” numbered data
shards scraped by prom-
db-1

- And “odd” numbered
ones scraped by prom-
db-2

- Generalization: hash and
modulus using Prometheus
hashmod relabel config

- Hashing done on data
shard ID (& keyspace)

Hashmod Relabel Config
…
- source_labels: [__meta_kubernetes_pod_label_keyspace, __meta_kubernetes_pod_label_shard]

action: hashmod
modulus: __MODULUS__
target_label: hashmod

- source_labels: [hashmod]
regex: __SHARD__
action: keep

...

• Our deployment scripts
takes yaml template as
input and generates
prometheus yaml files

• “Keyspace + shardID” is
the input to the hashmod
function

• A nice side effect: all
replicas of a data shard
are scraped by the same
Prometheus server

… prom-db-1.yaml
- source_labels: [__meta_kubernetes_pod_label_keyspace, __meta_kubernetes_pod_label_shard]

action: hashmod
modulus: 2
target_label: hashmod

- source_labels: [hashmod]
regex: 0
action: keep

...
… prom-db-2.yaml
- source_labels: [__meta_kubernetes_pod_label_keyspace, __meta_kubernetes_pod_label_shard]

action: hashmod
modulus: 2
target_label: hashmod

- source_labels: [hashmod]
regex: 1
action: keep

...

High Availability of Sharded Prometheus
- High availability: deploying

the same set of
Prometheus servers
(mirrored config) in two
clusters

- Active/standby
configuration for each
Prometheus server pair

- The paired Prometheus
servers share same config
and scrape the same
targets

Sharded Setup with Multiple Categories
• Multiple categories: DB

Service, DB Proxy, DB
Engine, Indexing Engine,
OS metrics

• A Prometheus cluster
dedicated to each
category

• Each Prometheus cluster
has multiple shards

• Each prometheus cluster
is mirrored in a remote DC
for HA

Federation: Level 0 & 1 Recording Rules

- record: level0:inserted_document_at_keyspace_level:rate5m
expr: sum(rate(document_total{state=”inserted"}[5m])) BY(keyspace)

- record: level1:inserted_document_at_keyspace_level:rate5m
expr: sum(level0:inserted_document_at_keyspace_level:rate5m) BY (keyspace)

Highly Available Federated Setup

• Highly available federation server pair
• Highly available sharded Prometheus

servers
• Each federation server scrapes the

sharded Prometheus cluster via LB VIPs
to provide HA transparently

• Grafana points to LB VIPs

Complete Picture: Federated and Sharded Setup

• Automation scripts developed to deploy the full setup illustrated above

Outline
• Metrics capturing and aggregation
• The Sharded and Federated Prometheus cluster
• Query routing & UI integration
• Monitoring experiences
• Conclusions

Query Routing
• The hashmod function determines which Prometheus sharded

server should scrape (and store) metrics for a particular data
shard

• A visualization framework (such as Grafana) requires auto-
selection of the Prometheus data source to query metrics

• The solution:
• A Federated Lookup/Routing table in our Prometheus cluster

setup and
• Templated variables and templated datasource in Grafana
• No changes needed to Prometheus and Grafana

Auto-Populated Datasource in Grafana

• Example: View metrics at shard-level.
• The metrics are labeled with

{replica id, shard id, keyspace}
hierarchy

• {keyspace, shard} are chosen from
the first two drop-downs

• The Datasource (a templated data
source) is automatically populated

Federated Lookup Routing Map
• A special recording rule (timeseries): level0:routing_map_prom_keyspace_shard

• Based on the default ‘up’ for every scraped target
• Deployed to each Prometheus shard
• Scraped by the Federation server

• A Time-based Global Lookup Table: mapping of {scraped targets, Prometheus shard} over time.

Instant Timeseries Vector on prom-shard-1
level0:routing_map_prom_keyspace_shard
{keyspace=”KS1",shard=”1", zone="PHX"}
level0:routing_map_prom_keyspace_shard
{keyspace=”KS2",shard=”3", zone="PHX"}

Instant Timeseries Vector on prom-shard-2
level0:routing_map_prom_keyspace_shard
{keyspace=”KS1",shard=”2", zone=”LVS"}
level0:routing_map_prom_keyspace_shard
{keyspace=”KS2",shard=”4", zone=”LVS"}

record: level0:routing_map_prom_keyspace_shard
expr: count(up{job=~"monstordb-.*"})
BY (keyspace, shard, zone)

Instant Timeseries Vector on prom-federation (with injected external label ds_name)
level0:routing_map_prom_keyspace_shard {keyspace=”KS1",shard=”1", zone="PHX”, ds_name=“prom-shard-1}
level0:routing_map_prom_keyspace_shard {keyspace=”KS1",shard=”2", zone=”LVS”, ds_name=“prom-shard-2}
level0:routing_map_prom_keyspace_shard {keyspace=”KS2",shard=”3", zone="PHX”, ds_name=“prom-shard-1}
level0:routing_map_prom_keyspace_shard {keyspace=”KS2",shard=”4", zone=”LVS”, ds_name=“prom-shard-2}

Template Variables based on Routing Map
The label_values() function is applied to
level0:routing_map_prom_keyspace_shard at the
Federation server

List of keyspaces =
label_values(level0:routing_map_prom_keyspace_shard
, keyspace) = { KS1, KS2 }

List of shards of KS1 =
label_values(level0:routing_map_prom_keyspace_shard
{keyspace=KS1}, shard) = {1, 2 }

List of shards of KS2 =
label_values(level0:routing_map_prom_keyspace_shard
{keyspace=KS2}, shard) = {3, 4 }

Template Variables based on Routing Map
• Upon a keyspace and shard selection,

retrieve the Datasource name by making
query to Federated Prometheus server:

• datasource_hint =
label_values(level0:routing_map_prom_
keyspace_shard {keyspace=KS1,
shard=1}, ds_name) = {prom-shard-1}

• The label values of ds_name match the
datasource names we define in Grafana

• Grafana `datasource` type template variable
cannot be directly of ‘query’ value type

• Hence the hidden variable datasource_hint
is introduced to hold query value in the
transient/hidden variable

Outline
• Metrics capturing and aggregation
• The Sharded and Federated Prometheus cluster
• Query Routing & UI Integration
• Monitoring experiences
• Conclusions

Self Monitoring (Monitoring of Monitoring)
• All Prometheus instances are scraped by a Selfmonit

Prometheus instance
• The whole monitoring infrastructure metrics captured at

one place
• Easy comparison of metrics among Prometheus shards

(e.g., load distribution is even or not)

• Self Monitoring instance is also HA

Self Monitoring (Monitoring of Monitoring)

Self Monitoring
• Example queries:

• Relative deviation in time series appended: sum
(rate(prometheus_tsdb_head_samples_appended_total{container_name="pro
metheus"}[5m]) /
rate(prometheus_tsdb_head_samples_appended_total{container_name="prom
etheus"}[5m] offset 30m)) by (instance, pod_name, prom_shard, prom_type,
tess_cluster, tess_namespace)

• Rule evaluation duration percentile :
prometheus_rule_evaluation_duration_seconds{prom_type=~"prometheus.*",
quantile="0.99"}

• Example of alert rules:
• Down Prometheus instances
• Abrupt drop in time series appended
• Abrupt drop in targets discovered
• VIP endpoint reachability

Pinpoint Troublesome Runtime Entities
• Example 1: Read error rate

to a keyspace is now going
up, what are the worst
service pods that we need
to investigate?

• Query over each sharded
Prometheus server and
combine the top-k results

topk(5, sum(increase
(failed_responses_total{keyspace=”K1”,
method_name=”READ”}[30m])) by
(pod_name))

Pinpoint Troublesome Runtime Entities (2)
• Alternatively, to have the

following query to be plotted
over the specified time range,
on each sharded Prometheus
server and inspect the results:

• Plotting can be done in the
Prometheus web console:

• It can handle hundreds of time-
series plots easily

sum(rate
(failed_responses_total{keyspace=”K1”,
method_name=”READ”}[5m])) by
(pod_name))

Special OS Metrics Aggregation
• A database pod has pod spec. to track the logical hierarchy {keyspace, shard, replica}

• Kublet exposes OS pod level metrics, but without labels from the application’s pod spec
attached

• Thus CPU/memory aggregation over logical hierarchy is not available

• Solution: label extraction and label injection, by leveraging the naming convention that we
follow for database pods:

container_memory_rss (zone=“…”, host=“…”, rack=“…”, pod=pod_name) =
150000

pod_name = keyspace-id + shard-id + replica-id + other information

Special OS Metrics Aggregation
• Label extraction: to extract

keyspace id, shard id and
replica id from pod name

• Label injection: to inject
labels: {keyspace, shard, and
replica} into the OS metrics

• Thus OS aggregation over
logical aggregation is now
available

Alert Summarization

• A Prometheus alert has the labels from the recording rule evaluated

• Summarization on alerts:
• Over severity {critical, high, warning}
• Over logical hierarchy
• Over physical hierarchy

• For both historical alerts and active firing (not resolved) alerts

• Solution: to store and index the received alerts into Elasticsearch

Alert Dashboard in Kibana

Logical/Physical
Hierarchies

Alert Severity

Resolved/Active Firing

Historical or
Real-time

Outline
• Metrics capturing and aggregation
• The sharded and federated Prometheus cluster
• Query routing & UI integration
• Monitoring experiences
• Conclusions

Conclusions
• Prometheus itself is deployed as a standalone single process

• We have developed a horizontally scalable, sharded, and federated
Prometheus monitoring cluster from Prometheus binary distribution
with full automation scripts, without modifying its source code

• The scalable monitoring cluster allows us to have real-time
dashboards and real-time alerts over the hierarchically aggregated
metrics

Thank You !

Q & A

