
Service Meshes:
The Production Readiness
Checklist for the Rest of Us

Austin Adams & Zach Arnold

Who is this for?

● You are probably:
○ At KubeCon/CloudNativeCon NA in 2018

○ Aware of what a Service Mesh is at a high level

○ Managing a production collection of services (micro

or otherwise) that communicate over TCP with each

other

○ Experiencing the pain that comes with running

these services at some scale

○ Needing a solution to your TCP based problems

and don’t have time for a complete rework of your

application’s architecture

○ In a small to mid-size business

Who is this probably not for?

● You are probably not:

○ Able to dedicate an army of

engineers to solving this problem

specifically for your business

○ Currently holding a PhD in

Computer Science in the specific

field of networking

○ Already running a service mesh in

production

Who/What is Ygrene?

● Financial Services Sector

● Privately Held, Publicly Good

● PACE = Property Assessed Clean Energy

● Ygrene = The word “Energy” spelled backwards

● Our mission is to make sure that Earth is still a

thing in the future.

HIRING IN SEATTLE, FLEXIBLE, REMOTE, WEWORK…

Service Meshes Distilled

● With every “Mesh” worth using you’ll get:

○ TCP proxying
■ (HTTP1,1.1,2.0,gRPC…)

○ Traffic Flow Control:
■ DNS (or Service Discovery)
■ Load Balancing
■ Timeouts/Retries/Fault Injection/Circuit

Breaking
■ Routing

○ Security
■ mTLS
■ Auth-n/Auth-z

○ Observability
■ Metrics
■ Distributed Tracing

SORRY
NO

MEME

The Landscape...more or less

● Linkerd 1 and 2 (CNCF project formerly Conduit)

● Istio (IBM + Google) with a proxy:

○ Envoy (CNCF Proxy Project)

○ Nginx

● Aspen Mesh (Managed Istio)

● AWS App Mesh

● Azure Service Fabric Mesh

● GKE Managed Istio (Is this a thing yet?)

● Nginx+…. Seriously you can pay for Nginx

The Roadmap to Production

Assess
Select +
Commit Implement Release

Assess

● Do we need a service mesh?, What

problem does it solve?

○ Its okay if that’s a no!

● Questions to Ask yourself / POC

○ Can our team handle the added

complexity ?

○ Can your application handle a service

mesh ?

Assess

● Use Cases

○ Encryption between microservices without the cert management.

○ End user JWT authentication (Istio)

○ Service to service Authentication/Authorization

○ Tracing/Instrumenting your applications.

○ Intelligent routing, route by cookie, device, region, canary deployments, api

version routing. Mirroring!!, Fault Injection!!

Assess - Our Use Case

Traffic needed to be encrypted,

everywhere

Traffic needed to be restricted.

JWT was being validated all the time.

Service to service permissions can be

static.

We don’t want to refactor tons of code.

Assess

● Feature Mapping

● List our projects

● List our features

○ Including the Open Source Test

● Add Weights!

○ Add a number for every feature

● Try out the top contenders

○ Sum each project

Select + Commit

● Before Deciding, consider!

● The open source Litmus Test for choosing open-source Technology:

○ How long has it existed?

○ How popular is it in terms of contribution/usage?

○ How well sponsored is it and by whom?

○ How recently has it changed?

● Our general rule is to use a managed service where possible...it lets us

concentrate on Ygrene stuff

○ But we couldn’t (EKS) so we went open source.

Select + Commit

● Our Advice!

● Linkerd 2 is simple, easy to install and will get you simple routing, metrics. Use it

if you want to get a service mesh going quick.

● Istio for literally anything else if you depend on Kubernetes.

● Dont ignore Linkerd 1, especially if you have non Kubernetes services.

ISTIO!!!!!!!!

After talking to you this week...

● I changed this portion of the talk

● We will focus on a few key areas

○ Shoehorning Istio (the Envoy sidecar) into your app/Engineer buy-in

○ The bits and pieces of Istio that don’t work well in EKS yet

○ How we got it into prod (for our use case, #security)

Implement...not just a demo app

● We did the opposite of what the textbook says for a good reason

○ Our first service in the mesh was the hardest to do and it handles almost

100% of our Ingress, which means we configured Ingress too!

■ It also has the most other peripherals (3rd party svcs, RDS, Redis...)

■ This portion of our app is the edge case factory...

○ The rest of our services inherit from a common base, so updating was a

simple as pushing an upstream change and rolling out deploy plans

○ Dev buy in was simple, since it interrupted almost no one’s workflow

Implement...a suggested strategy

● If you can...use Helm

○ And turn off stuff for EKS

● Using your selected features,

focus on the components you need

● For us, that was Citadel (mTLS)

● We highly recommend working

on instrumenting metrics early,

it will save you diagnosing

problems in the long run

Implement...a suggested strategy

● Prometheus (our own)

● Fluentd (our own)

● Grafana (our own)

● Jaeger (SUPER USEFUL

FOR DEBUGGING)

Implement...a suggested strategy

● Our hardest part would be our migration to using Service Mesh tools for

authz/authn
○ Create VirtualServices for any service that would receive traffic from the Istio Ingress Gateway

1) Inject the Sidecar

2) Create VS’s

Implement...a suggested strategy

● Whitelist all outbound HTTPS/TCP traffic to 3rd party vendors (RDS, Credit

Report Vendors, Redis...)

○ VPC Endpoints too! (Amazon CNI)

3) Whitelist
ServiceEntries and
VirtualServices

VPC Endpoints

RDS

Implement...a suggested strategy

● Get ready for deployments, and

leverage Istio DestinationRules or

Kubernetes Services

○ (if you do Blue/Green or Canary

deployments)

○ Otherwise Istio just works like

Kubernetes services

● Load test, load test, load test

Release...with no interruptions

● Provision SSL certs for public domains that you want routable in the mesh early

○ We used the Jetstack Certmanager (Open Source)

● Change DNS to the ingress

Release...with no interruptions

● Change the internal mesh policy to accept mixed auth traffic and change

senders of traffic to use TLS

● Enforce TLS everywhere by policy

Release...with no interruptions

● Enforce communication restrictions via RBAC (if necessary)

