
Securing Kubernetes
With Admission
Controllers

Who Am I?

Dave Strebel
Microso' Global OSS Architect
Sig-Azure Co-Chair
Kubernetes Release Team
Twi>er: @dave_Strebel

So you’re going to deploy Kubernetes?

You’re Going To Deploy What?

The Problem

• Dynamic nature of Cloud Native Patterns
• Tools not adopted for Cloud Native Patterns
• Not secure by default
• Clusters not immutable
• Policy becomes tribal knowledge and not defined

in code

Approaches
• Manual Intervention
• Restrict users from creating objects

Then our architecture looks like this…

Our architecture looks like this…

Leads to frustration

Kubernetes Without Security
Compliance!

Admission Controllers

Who’s Using Admission Controllers?

Default Admission Controllers

1. NamespaceLifecycle

2. LimitRanger

3. ServiceAccount

4. PersistentVolumeLabel

5. DefaultStorageClass

6. DefaultTolerationSeconds

7. ResourceQuota

8. Priority

9. MutatingAdmissionWebhook

10.ValidatingAdmissionWebhook

What Are Admission Controllers

An admission controller is a piece of code that intercepts
requests to the Kubernetes API server prior to persistence
of the object, but after the request is authenticated and
authorized. - Kubernetes.io

How Admission Controllers Work

Authentication Authorization Object
Validation

Validating
Admission

Mutating
Admission

Kubernetes API Server

ETCD

Mutating
Webhook

Validating
Webhook

Jane

Dynamic Admission Control

• Validating Webhook

o Allows you to intercept and validate requests

o Can be run in parallel, as they don’t mutate objects

o Example use case: restricting resource creation

• Mutating Webhook

o Executes the mutation by sending requests to webhook server

o Matching webhooks are called in serial

o Example use case: injecting side cars

o Policy Enforcement

o Admission Control is policy based on Kubernetes objects.

o Network Policy and PodSecurity Policy focus on data plane policy

o RBAC is policy enforced on the user

That’s awesome! But…

Sample Admission Webhook

How can you get policy enforcement without
writing a bunch of custom logic?

You can use a general purpose policy engine

Open Policy Agent

Image: openpolicyagent.org

• CNCF Hosted Sandbox Project
• General purpose policy engine
• Can be used across the stack
• Declarative policy language (Rego)

Service refers to:
• Kubernetes API
• Custom API
• SSH Daemon
• Terraform
• Authorization APi

Output can be any JSON value:

”true
”request annotated”

“ “annotations": {
costCenter: 8000

}

Input can be any JSON value:

"kind": "Service",
"metadata": {

"annotations": {
department: dev

}

Service

OPA

Policy
(Rego)

Data
(JSON)

Request

Enforcement

Policy
Query

Policy
Decision

Diagram rewritten from:
www.openpolicyagent.org

Example Rego Policy

• Rego is a policy language and not a programing language, so don’t think about sockets, methods, binary
trees, etc.

• Think about two things: Logic and Data
• Rego logic is all queries. A query finds values for variables that make boolean conditions true.
• You write logic to search and combine JSON/YAML data from different sources.

deny[{
"id": "conditional-annotation",
"resource": {"kind": kind, "namespace": namespace, "name": name},
"resolution": {"patches": p, "message" : "conditional annotation"}, }] {

matches[[kind, namespace, name, matched_object]] matched_object.metadata.annotations[”Mr-T"]
p = [{"op": "add", "path": "/metadata/annotations/cost-center", "value": ”A-Team"}] }

Who manages all this policy?

Ice Kube

Acid Burn

The Governor

Platform Operator

Developer

OPA Policy

Creates And Maintains

Deploys Apps

Audits Platform

Policy

Immutable Platform

Kubernetes

Apps Apps

Infrastructure

Policy

Deploy

Immutable Platform

But there’s more…

Kubernetes Policy Controller

• Kubernetes Policy Controller
• Moving to OPA org, as a standard Kubernetes Policy Controller
• Authorization module makes it possible to implement a blacklist in front of RBAC
• Provides auditing features
• Deployment consist of three containers: OPA, kube-mgmt., and Controller

• Examples:
• Whitelist / blacklist registries.
• Not allow conflicting hosts for ingresses.
• Label objects based on a user from a department.
• Block kubectl exec <pod>

Temporarily Home: https://github.com/Azure/kubernetes-policy-controller

Demos

Mutate
Load Balancer

apiVersion: v1
Kind: Service
Name: jetson-lb
Spec:

type: LoadBalancer
….

apiVersion: v1
Kind: Ingress
Name: elroy-ingress
Spec:

host:
elroy.tugboatlabs

kubectl exec api-server
Restrict Access To

CRDs

Deny Conflicting
Ingress Host Names

request

request

request

evaluation

evaluation

evaluation

The Good, The Bad, and Gotchas
• Good

• OPA approach allows you to decouple policy from your applications

• General purpose, so can be used outside of Kubernetes context.

• Bad

• There can be a learning curve to Rego.

• Can cause latency, but’s negligible for most apps. (more of a consideration)

• Gotchas

• Mutating objects need to be handled with care. They can cause unexpected

behavior to what the end-user expects.

Takeaways

• Focus on security is a must in any Kubernetes deployment.

• Help educate Security Teams on how to extend Kubernetes to integrate custom

policies.

• Treat the Kubernetes cluster as immutable, just like you do with applications.

• Multiple ways to accomplish policy

• Build all your own logic and utilize dynamic admission control

• Utilize Open Policy Agent to simplify deployment and logic for rule sets.

Other Sessions

• Intro To Open Policy Agent – Case Study With Capital One and Intuit
• Deep Dive: Open Policy Agent

