
Speaker, Date

Kubecon US
Scaling AI Inference with
Kubernetes and GPUs

2

Who We Are

Renaud Gaubert
Containers, K8s & OSS

Mr. Kubernetes

Ryan Olson
DL, HPC & Cloud

Solution Architect
Hybrid

3

Involvement in the Community

❑ February 2017: Involvement in the community discussions

❑ Spring 2017: Face 2 Face meeting @ Google

❑ Summer 2017: GPUs in K8s Design doc

❑ Kubernetes 1.8: Alpha Feature available

❑ Kubernetes 1.10: Beta Feature available

❑ Spring 2018: Face 2 Face meeting @ NVIDIA

❑ Kubernetes 1.12: GPU Monitoring in K8s

❑ Kubernetes 1.13: Alpha GPU Monitoring

4

AGENDA

Scaling AI Inference with Kubernetes and GPUs

Why do we care?

Scaling with GPUs

AI Inference Pipeline

Scaling with Kubernetes

5

Why Do We Care?

6

LIVE VIDEO SPEECH

Creating a $20 Billion Opportunity in Next 5 Years

AI Inference Is Exploding

RECOMMENDATIONS

1 Billion
Voice Searches Per Day

Google, Bing, etc.

1 Billion
Videos Watched Per Day

Facebook

1 Trillion
Ads/Rankings Per Day

Impressions

7

50% Reduction in Emergency

Road Repair Costs

>$6M / Year Savings and

Reduced Risk of Outage

INFRASTRUCTUREHEALTHCARE IOT

AI Transforming Every Industry

>80% Accuracy & Immediate Alert

to Radiologists

8

Scaling with GPUs

Bigger and More Compute Intensive

Neural Network Complexity Is Exploding

NEW TURING TENSOR CORE

MULTI-PRECISION FOR AI INFERENCE

65 TFLOPS FP16 | 130 TeraOPS INT8 | 260 TeraOPS INT4

11

Universal Inference Acceleration

320 Turing Tensor cores

2,560 CUDA cores

65 FP16 TFLOPS | 130 INT8 TOPS | 260 INT4 TOPS

16GB | 320GB/s

TESLA T4
WORLD’S MOST ADVANCED INFERENCE GPU

12

13

AI Inference Pipeline

1. Input Data from Source

2. Transform Input → Input Tensors (on CPU or GPU)

3. Input Tensors → GPU memory

4. Compute

5. Output Tensors → Host memory

6. Transform Output Tensors → consumable Output value

- BEST Performance / Value = Keeping the Pipeline FULL

- Integrating HPC best practices into data center workloads

Compute Pipeline

- Ingest
- Moving Input to Compute (gb/sec)

- Input → Input Tensors (reversed for Output)
- What is the compression ratio for common problems?

- Computational Time to Transform?

- Ratio of Compute vs. Transfers
- Goal: Evaluation of the DNN is the rate limiting condition

- Success = Proper choice of Hardware, Software and Tuning Parameters

Where are the Bottlenecks?

Compute → Pre/Post → Serving → Metrics → Kubernetes

TensorRT

Performance

Memory Footprint

Control over Precision (fp/int)

Deployable Package

Lowest DNN Compatibility

Framework + TRT

Framework Fallback for

Unsupported TRT Layers

Framework Overheads

Allocation Ownership Issues

Framework

Most DNN Compatibility

Most Overhead

Least Performant

Preferred

Inference Compute Options

18

TensorRT

Designed to deliver maximum
throughput and efficiency

Runs in two phases: build and
deployment

The build phase optimizes the network
for target hardware and serializes
result

Deployment phase executes on
batches of input without any deep
learning framework

19

Up To 36X Faster Than CPUs | Accelerates All AI Workloads

WORLD’S MOST PERFORMANT INFERENCE PLATFORM

Speedup: 36x faster
GNMT

Speedup: 27x faster
ResNet-50 (7ms latency limit)

Speedup: 21X faster
DeepSpeech 2

Compute → Pre/Post → Serving → Metrics → Kubernetes

● Problem Specific

● Requires the same level of attention as evaluating the DNN compute

● Questions
○ CPU vs. GPU (video decode example)

○ Location

■ IN-Process (same memory space)

■ IN-Pod (shared IPC spaces, i.e shared memory, /tmp

■ IN-Node (co-located on the same node via Pod Affinities)

● May need hacks to break down namespace barriers

● Scaled independently

■ Fully Independent

● Answer: Data Movement is Key

Coupled / scaled jointly

Pre/Post Processing

Compute → Pre/Post → Serving → Metrics → Kubernetes

23

NVIDIA TensorRT
INFERENCE SERVER
Containerized Microservice for Data Center Inference

Tunable Concurrency

Multiple models scalable across GPUs

Supports all popular AI frameworks

Seamless integration into DevOps
deployments leveraging Docker and
Kubernetes

Ready-to-run container, free from
the NGC container registry

NV DL SDK

NV Docker

DNN Models

TensorRT

Inference

Server

Kubernetes

Compute → Pre/Post → Serving → Metrics → Kubernetes

25

AVAILABLE METRICS

Category Name Use Case Granularity Frequency

Utilization

Power usage
Proxy for load on the GPU Per GPU Per second

Power limit Maximum GPU power limit Per GPU Per second

GPU Utilization
GPU utilization rate

[0.0 - 1.0)

Per GPU Per second

Count
GPU & CPU

Request count Number of inference requests Per model Per request

Execution count

Number of model inference executions

Request count / Execution count = Avg dynamic

request batching

Per model Per request

Inference count
Number of inferences performed (one request

counts as “batch size” inferences)

Per model Per request

Latency
GPU & CPU

Latency: request time End-to-end inference request handling time Per model Per request

Latency: compute time
Time a request spends executing the inference

model (in the appropriate framework)

Per model Per request

Latency: queue time
Time a request spends waiting in the queue

before being executed

Per model Per request

26

Monitoring

$ helm repo add nvidia https://nvidia.github.io/gpu-monitoring-tools/helm-charts

$ helm install nvidia/prometheus-operator

$ helm install nvidia/kube-prometheus

Compute → Pre/Post → Serving → Metrics → Kubernetes

28

Scaling With Kubernetes

29

Resource Attribution
Many users, many nodes

On-prem

DGX DGX DGX

DGX DGX DGX

DGX DGX DGX

K
u
b
e
rn

e
te

s

Production Inferencing
Hybrid

Cloud bursting
Hybrid

Kubernetes
Use cases for GPU Powered Applications

30

AI DEPLOYMENTS – THEN AND NOW

...

Apps

Server

Host Operating System

Hypervisor

Guest OS

App App

Guest OS

Virtual
Machines

Data Scientists, Developers

IT Ops / Sys Admin

...

“Orchestrator”

Data Scientists, Developers
DevOps

Container Registry

App descriptor
(Versioned)

Centralized Infrastructure

31

How does it fit with K8s?

GPU Powered App
Production Deployment

33

Pitfalls of Kubernetes
Inside Kubernetes Resource Management (Kubecon EU18)

Class CPU Memory

R(equests)

L(imits)

R(equests)

L(imits)

R

L

R

L

R

L

R

L

Best Effort
Requests = Limits

= 0
(all Containers)

Burstable
0 < Requests <= Limits

(at least one
Container)

Guaranteed
0 < Requests = Limits

(all Container)

K8s uses CFS Quotas to enforce CPU limits. There is a known bug affecting well

behaved applications by CPU throttling them.

https://www.youtube.com/watch?v=8-apJyr2gi0
https://github.com/kubernetes/kubernetes/issues/51135
https://github.com/kubernetes/kubernetes/issues/67577

Speaker, Date

End of Talk

