Kubecon US Scaling Al Inference with Kubernetes and GPUs

Speaker, Date

Who We Are

Renaud Gaubert Containers, K8s & OSS Mr. Kubernetes **Ryan Olson** DL, HPC & Cloud Solution Architect

Involvement in the Community

- **February 2017:** Involvement in the community discussions
- □ **Spring 2017**: Face 2 Face meeting @ Google
- □ Summer 2017: GPUs in K8s Design doc
- □ Kubernetes 1.8: Alpha Feature available
- □ Kubernetes 1.10: Beta Feature available
- □ Spring 2018: Face 2 Face meeting @ NVIDIA
- □ **Kubernetes 1.12:** GPU Monitoring in K8s
- □ Kubernetes 1.13: Alpha GPU Monitoring

Scaling AI Inference with Kubernetes and GPUs Why do we care? Scaling with GPUs AI Inference Pipeline Scaling with Kubernetes Why Do We Care?

Al Inference Is Exploding

Creating a \$20 Billion Opportunity in Next 5 Years

1 Billion Videos Watched Per Day Facebook

1 Billion Voice Searches Per Day Google, Bing, etc.

1 Trillion Ads/Rankings Per Day Impressions

LIVE VIDEO

SPEECH

RECOMMENDATIONS

AI Transforming Every Industry

INFRASTRUCTURE

>80% Accuracy & Immediate Alert to Radiologists <image>

>\$6M / Year Savings and Reduced Risk of Outage

50% Reduction in Emergency Road Repair Costs

Scaling with GPUs

Neural Network Complexity Is Exploding

Bigger and More Compute Intensive

NEW TURING TENSOR CORE

MULTI-PRECISION FOR AI INFERENCE 65 TFLOPS FP16 | 130 TeraOPS INT8 | 260 TeraOPS INT4

THROUGHP

TURING TENSOR CORES

INT8

TESLA T4 WORLD'S MOST ADVANCED INFERENCE GPU

Universal Inference Acceleration 320 Turing Tensor cores 2,560 CUDA cores 65 FP16 TFLOPS | 130 INT8 TOPS | 260 INT4 TOPS 16GB | 320GB/s

Al Inference Pipeline

Compute Pipeline

- 1. Input Data from Source
- 2. Transform Input \rightarrow Input Tensors (on CPU or GPU)
- 3. Input Tensors \rightarrow GPU memory
- 4. Compute
- 5. Output Tensors \rightarrow Host memory
- 6. Transform Output Tensors \rightarrow consumable Output value
- BEST Performance / Value = Keeping the Pipeline FULL
- Integrating HPC best practices into data center workloads

Where are the Bottlenecks?

- Ingest
 - Moving Input to Compute (gb/sec)
- Input \rightarrow Input Tensors (reversed for Output)
 - What is the compression ratio for common problems?
 - Computational Time to Transform?
- Ratio of Compute vs. Transfers
 - Goal: Evaluation of the DNN is the rate limiting condition
- **Success** = Proper choice of Hardware, Software and Tuning Parameters

<u>Compute</u> \rightarrow Pre/Post \rightarrow Serving \rightarrow Metrics \rightarrow Kubernetes

Inference Compute Options

<u>TensorRT</u>

Performance Memory Footprint Control over Precision (fp/int) Deployable Package Lowest DNN Compatibility

Framework + TRT

Framework Fallback for Unsupported TRT Layers Framework Overheads Allocation Ownership Issues

Framework

Most DNN Compatibility Most Overhead Least Performant

Preferred

TensorRT

Designed to deliver maximum throughput and efficiency

Runs in two phases: build and deployment

The build phase optimizes the network for target hardware and serializes result

Deployment phase executes on batches of input without any deep learning framework

WORLD'S MOST PERFORMANT INFERENCE PLATFORM

Up To 36X Faster Than CPUs | Accelerates All AI Workloads

Compute \rightarrow <u>Pre/Post</u> \rightarrow Serving \rightarrow Metrics \rightarrow Kubernetes

Pre/Post Processing

- Problem Specific
- Requires the same level of attention as evaluating the DNN compute
- Questions
 - CPU vs. GPU (video decode example)
 - Location
 - <u>IN-Process</u> (same memory space)
 - <u>IN-Pod</u> (shared IPC spaces, i.e shared memory, /tmp
 - IN-Node (co-located on the same node via Pod Affinities)
 - May need hacks to break down namespace barriers
 - Scaled independently
 - Fully Independent
- Answer: Data Movement is Key

Coupled / scaled jointly

Compute \rightarrow Pre/Post \rightarrow <u>Serving</u> \rightarrow Metrics \rightarrow Kubernetes

NVIDIA TensorRT INFERENCE SERVER

Containerized Microservice for Data Center Inference

Tunable Concurrency

Multiple models scalable across GPUs

Supports all popular AI frameworks

Seamless integration into DevOps deployments leveraging Docker and Kubernetes

Ready-to-run container, free from the NGC container registry

Compute \rightarrow Pre/Post \rightarrow Serving \rightarrow <u>Metrics</u> \rightarrow Kubernetes

AVAILABLE METRICS

Category	Name	Use Case	Granularity	Frequency
Utilization	Power usage	Proxy for load on the GPU	Per GPU	Per second
	Power limit	Maximum GPU power limit	Per GPU	Per second
	GPU Utilization	GPU utilization rate [0.0 - 1.0)	Per GPU	Per second
Count GPU & CPU	Request count	Number of inference requests	Per model	Per request
	Execution count	Number of model inference executions Request count / Execution count = Avg dynamic request batching	Per model	Per request
	Inference count	Number of inferences performed (one request counts as "batch size" inferences)	Per model	Per request
Latency GPU & CPU	Latency: request time	End-to-end inference request handling time	Per model	Per request
	Latency: compute time	Time a request spends executing the inference model (in the appropriate framework)	Per model	Per request
	Latency: queue time	Time a request spends waiting in the queue before being executed	Per model	Per request

Monitoring

\$ helm repo add nvidia https://nvidia.github.io/gpu-monitoring-tools/helm-charts
\$ helm install nvidia/prometheus-operator

\$ helm install nvidia/kube-prometheus

Compute \rightarrow Pre/Post \rightarrow Serving \rightarrow Metrics \rightarrow <u>Kubernetes</u>

Scaling With Kubernetes

Kubernetes

Use cases for GPU Powered Applications

Resource Attribution Many users, many nodes Cloud bursting

Production Inferencing

AI DEPLOYMENTS - THEN AND NOW

Data Scientists, Developers

How does it fit with K8s?

Pitfalls of Kubernetes

K8s uses CFS Quotas to enforce CPU limits. There is a known bug affecting well behaved applications by CPU throttling them.

End of Talk

Speaker, Date