
Running Serverless HPC 
Workloads on Top of Kubernetes 
and Jupyter Notebooks
Christopher Woods, University of Bristol, UK

https://chryswoods.com/talks

https://chryswoods.com/talks


Research at the Cutting Edge

HIV Protease

HIV Reverse Transcriptase

ADDomer pseudo-virus 
immuno-promoter

Increasing size and 
complexity of 
simulations



High Performance Computing

1. SSH to login node

2. Upload input (rsync)

3. Submit job to Q

4. Wait in Q 5. Wait for job

5. Download output (rsync)

6. Analyse results



Demo



Jupyter Notebooks

https://jupyter.org – https://biosimspace.org

• Jupyter notebook combines the;
• description of the experiment
• code to run the experiment
• code to analyse the results
• graphs and 3D visualisations of the 

results
• conclusions of the experiment

• They contain everything 
needed to describe and 
reproduce the experiment

https://jupyter.org/
https://biosimspace.org/


Notebooks are interactive papers

Cloud
Home

(Bristol)

Public Internet

• All compute and data sits in the cloud. 
Only the information needed to render 
the data in the notebook is transmitted 
over the network

• Hugely useful for open 
and reproducible science

• Notebooks are, in effect, 
interactive scientific 
papers J

…but where is the compute to run them? 
How can anyone reproduce the results if 
they don’t have a local HPC machine?



Kubernetes and JupyterHub

Authenticate 
User

Jupyter 
Server

Disk

Google Kubernetes Engine

Microsoft Azure Kubernetes Service

Oracle Cloud Infrastructure Container Engine for Kubernetes

• JupyterHub running on k8s
• Easy to use helm chart!

• Great community and 

instructions

• Works with lots (all?) 

cloud kubernetes services, 

or roll-your-own clusters

https://zero-to-jupyterhub.readthedocs.io/en/stable/

https://zero-to-jupyterhub.readthedocs.io/en/stable/


• The above line starts and runs a molecular dynamics simulation
• However, we cannot run this in the k8s pod, as the hardware is too tiny…

• (…or else the k8s cluster would be too expensive)
• Instead we burst out to HPC hardware using a “serverless” function service

Auto-scaling 1 or 2 core VMs

MD.run(system, protocol)

Fn service running on 52-core HPC nodes

Simulations as Serverless Functions



Fn Serverless : https://fnproject.io
Fn is an event-driven, open source, Functions-as-a-Service (FaaS) compute platform that you can run anywhere.

Function

https://acquire-aaai.com:8080/t/my-function

STDIN STDOUT

POST
REQUEST

HTTP/1.1 200 OK
Content-Type: application/json
Fn-Call-Id: 01CW9TB7M1NG8G00GZJ00001JT
Date: Wed, 14 Nov 2018 19:14:40 GMT
Content-Length: 1495

POST
RESPONSE

Code to run the function is wrapped into a docker container. This is allocated to hardware in response to a trigger 
(e.g. https). Input data is encoded via POST and piped in as STDIN to the container. This is processed by the 
function, with resulting STDOUT returned as a HTTP response

https://fnproject.io/
https://github.com/fnproject/docs/blob/master/fn/general/introduction.md


Fn Serverless : https://fnproject.io

• Function is ANY code (and associated software) that can be packaged into a 

docker container

• HTTP request is piped in as standard input

• Anything written to standard output is returned as the HTTP response

• Anything written to standard error is logged

• Functions can be synchronous (respond immediately) or asynchronous

• Asynchronous functions return a CALL_ID that can be queried to get progress, 

cancel function or collect output, thereby supporting long-running functions

• Supports ANY language! Development kits for Go, Python, Java, Ruby, 
Node, and Rust simplify function writing and automate creation of docker 
containers

https://fnproject.io/


Fn FDKs make it easy to write functions that use JSON as the input/output format, and that can “stay hot”

import fdk
import json

async def handler(ctx, data=None):
name = "World"
if data and len(data) > 0:

body = json.loads(data)
name = body.get("name")

return "Hello {0}".format(name)

if __name__ == "__main__":
fdk.handle(handler)JSON

{“name”:
”chris”}

JSON

POST
REQUEST

name=“Chris”

“Hello Chris”

POST
RESPONSE

Fn Serverless : https://fnproject.io

“Hello Chris”Python function wrapped via Fn
Python Devkit (FDK) handling 
JSON input and writing JSON 

output

https://acquire-aaai.com:8080/t/my-function

https://fnproject.io/


Simulations as Fn Functions

Fn service running on 52-core HPC nodesAuto-scaling 1 or 2 core VMs



Simulations as Fn Functions

Fn service running on 52-core HPC nodesAuto-scaling 1 or 2 core VMs

async call

MD.run(…)



Simulations as Fn Functions

Fn service running on 52-core HPC nodesAuto-scaling 1 or 2 core VMs

MD.run(…) GROMACS
Molecular

Dynamics (MD)

Run MD

func.py

async call



Serverless + Object Store J

Fn service running 
on 52-core HPC nodesAuto-scaling 1 or 2 core VMs

MD.run(bucket) GROMACS
Molecular

Dynamics (MD)

Run MD

func.py

async call

Object Store

INPUT DATA

INPUT DATA



Serverless + Object Store J

Fn service running 
on 52-core HPC nodesAuto-scaling 1 or 2 core VMs

GROMACS
Molecular

Dynamics (MD)

Run MD

func.py

Object Store

INPUT DATA

INPUT DATA
OUTPUT DATA

OUTPUT DATA

Stream output
to object store



Serverless + Object Store J

Fn service running 
on 52-core HPC nodes

Auto-scaling 1 or 2 core VMs

GROMACS
Molecular

Dynamics (MD)

Run MD

func.py

Object Store

INPUT DATA

INPUT DATA
OUTPUT DATA

OUTPUT DATA

Stream output
to object store

Live analysis by 
querying data as it 
arrives in the object 

store



Simulations as Fn Functions

• Different “molecular dynamics” Fn function calls can be associated with different 

hardware

• Enables high memory, big CPU or GPU nodes to be allocated on demand in 

response to function calls

• The Fn framework is open source and cross-platform, so can work on any cloud

• Works with any application that can be packaged into a docker container

• Object Store used as intermediary to keep messages small. Benefit is output data 

can be assigned a unique URL / DOI and immediately published

• Simple framework that allows ANYONE to run HPC simulations by calling the 
Fn function via a public URL



Anyone can run simulations…!

• Simple framework that allows ANYONE to run HPC simulations by calling 

the Fn function via a public URL!

That could get expensive…!

Looks like we need some user 

authentication, access control 

and accounting…



Authorisation (Identity)

• Built an authorisation (identity) service 
on top of Fn serverless and object store 
for state

• “request_login” call from the notebook 
calls “request_login” serverless function. 
This looks up user details from object 
store and returns a unique login URL

• Login page also served as html from an 
Fn function

• Notebook can wait for the login to 
complete, and uses security tokens to 
authenticate with simulation function 
service



Authorisation, Access, Accounting

Authorisation (Identity)

Accounting (billing)
Access (service discovery)

Simulation (HPC)

Object Store
(user storage)

Notebooks (console+GUI)

1. Login

2. Find user 
storage and 
available 
simulations

3. Pay for 
compute and 
storage

4. Upload data

5. Run simulation

Distributed 
application –

each part could 
be running in 

different clouds!



Serverless solves everything?

Modified from https://www.flickr.com/photos/-marlith-/2634898429



Cold Start is REALLY painful!

In 4087ms I expect my HPC code to perform ~40B 
floating point calculations and simulate ~5000 
steps of protein dynamics!

Spending >4s just to call a single 
function is embarrassing!



Cold Start is REALLY painful!

• Cold-start of a function is SLOW
• Container has to be allocated
• Python interpreter needs to start
• Modules must be imported
• Script must run
• State must be reloaded if needed

• Once called, the function is left 
running so it is ready to process 
the next request (it is hot)

• Someone has to pay the cost of 
“heating” the function

In 4087ms I expect my HPC code to perform ~40B 
floating point calculations and simulate ~5000 
steps of protein dynamics!

Spending >4s just to call a single 
function is embarrassing!



Packaging sub-functions into apps
import fdk
import json

async def hello(args):
name = “World”
if “name” in args:

name = args[“name”]
return “Hello {0}”.format(name)

async def handler(ctx, data=None):
if data and len(data) > 0:

body = json.loads(data)
func = body[“function”]
if func == “hello”:

return hello(body)
elif func == “goodbye”:

return goodbye(body)

return “UNHANDLED FUNCTION”

if __name__ == "__main__":
fdk.handle(handler)

https://acqui.red:8080/t/route

JSON JSON

POST
REQUEST

function=“hello”
Name=“Chris”

“Hello Chris”

POST
RESPONSE

“Hello Chris”{“function”:”hello”,
“name”:”chris”}



Packaging sub-functions into apps

route.py
get_keys

get_status
login

logout
register

request_login
setup
root

warm
whois

{“function” : “request_login”,
”username” : “chryswoods”,
“public_key” : “XXXXXXXX”,
“public_certificate” : “XXXXX”}

{“session_uid” : “XXXXXX”,
”login_url” : “https://acquire-

aaai.com:8080/t/identity/s?id=19b187fc”,
“user_uid” : “XXXXXXXX”}

https://acquire-
aaai.com/t/identity/s?id=19b187fc

https://acquire-aaai.com:8080/t/identity/route



Packaging sub-functions into apps
• Packaging all “sub-functions” into a single “function” that represents the application has 

many advantages:

• Once one of the sub-functions is hot, all sub-functions are hot

• As all sub-functions are in the same docker container, pulling this single container to a node 
gives it access to all sub-functions

• Async functions allow a single threads to handle multiple different sub-function calls at 
the same time

• You can cache state between sub-function calls, e.g. security IAM credentials used to access 
the object store, or reading rarely-changing data from object store (make use of Python 
cachetools and @cached decorator)

• Same security (data leaking) issues as keeping the interpreter hot, i.e. you 
must trust all code. Don’t execute arbitrary (user-supplied) code!!!



Profile to minimise startup time
• Choose a language and runtime that start 

quickly, e.g. like Python



• Choose a language and runtime that start 
quickly, e.g. like Python

• Profile your imports so that you can 
identify bottlenecks

Profile to minimise startup time



• Choose a language and runtime that start 
quickly, e.g. like Python

• Profile your imports so that you can 
identify bottlenecks

• Use “lazy_import” to delay/remove 
imports you don’t need or use

Profile to minimise startup time



One hot spare

async
call

• Just like in the hardware world, make sure 
you always have “one hot spare”

• Keep one instance of your “route.py” sub-
function bundle permanently hot

• (Ok, not really serverless, but it’s lightly 
using 1 core, which is pennies per hour… 
And practicality should always beat 
idealism)

• Have route issue an async (non-blocking) 
function call to “warm”. This does nothing 
except schedule a spare copy of route to 
be pre-warmed ready for other users

• Bundling subfuncs into route means that 
only one hot spare is needed for the app



The Planetary Supercomputer
• Building a service that allows on-demand 

running of HPC workloads from within 

interactive Jupyter notebooks with a full 

user Authentication, Access control and 

financial Accounting Infrastructure (AAAI)

• Fn is an excellent function / serverless 

platform. Open source J

• Fully portable – works across clouds!

• Notebooks + Serverless + Object Store 

equals programming the planetary 

supercomputer

• Or, as my students call it, building the 

Netflix of Simulation
Object Store == Disk/Memory Storage

Functions == Processes Notebooks == Console/GUI

AAAI == User accounts and resource scheduler



Fn running on OCI
in Germany

The Planetary Supercomputer

Fn running on Azure
in the Netherlands

Fn running 
on GCP in Japan

Notebooks running in Seattle OCI Object Store in Germany



Acknowledgements
My Research Software Engineering (RSE) Group 
Andrew Williams, Chris Edsall, Lester Hedges, Matt Williams

BioSimSpace Research Team 
Julien Michel, Antonia Mey, Adrian Mulholland, Charlie Laughton, Francesco Gervasio

EPSRC for funding (EP/N018591/1 and EP/P022138/1)

Oracle for providing a lot of compute time and extremely valuable discussions with cloud engineers and 
the Fn development team. Special thanks to Phil Bates and Gerardo Viedma

Microsoft and Google for providing cloud time to demonstrate the portability of the system

The countless open source developers behind Fn, Jupyter, Kubernetes, Docker, Gromacs, Linux etc. who 
all contribute their code to a common pool so that we can all build a better world together

The conference organisers for accepting my talk and you for attending
https://chryswoods.com/talks

https://chryswoods.com/talks



