
Real-time Vision
Processing on Kubernetes
Working with Data Locality

The Project

Offload Vision Processing &
Intelligence Logic

The
Robot

Kubernetes
Cluster

Goal!

Why Kubernetes?

Easy Ops Scalability

Eco-system

Real-time Vision Processing
is an attempt with uncommon
workloads on Kubernetes.

Vision Pipeline (part)

JPEG Image
640x480

OpenCV Face
Detection

FaceNet

Feature Matching &
Recognition

SSD MobileNet
Objects Detection

Resize/
Crop

MQTT

Intelligence &
Action

Decode Resize/
Crop

JSON
encoder

JSON
encoder

Neural Network

CPU Computing

Pre/Post processing

Message Bus

Input

Over WiFi

Challenges

● Real-time Image Processing
○ Decision must be effective within ~30ms delay
○ Not-so-reliable Home WiFi Network
○ Pre-trained Neural Networks run longer

● Neural Network Accelerator Support
○ Movidius Neural Compute Sticks on Kubernetes
○ Distributed Pipeline

● Kubernetes on ARM
○ Big-little architecture

Challenge - Hardware

The Cluster and Neural Network
Accelerators

What we have...

● The Robot
○ Single 720p Camera (working on 640x480)
○ Orange Pi Lite with built-in Wifi/Bluetooth
○ Zumo base (ATmega32U4 - arduino compatible)

● The Cluster
○ Ordroid HC1 x4 (Samsung Exynos5422 Cortex-A15 2Ghz

and Cortex-A7 Octa core CPUs)
○ Movidius Neural Compute Stick x4
○ Kubernetes 1.9 on Ubuntu 18.04

The Cluster & Accelerators

Accelerators on Kubernetes

● Access Movidius Compute
Stick inside container
○ Special initialization

process (unlike CUDA)
○ Solution

■ Privileged container
with host network

■ Bind mount host /dev
into container

App

libmvnc.so

libusb.so Accelerator
1. offload
firmware

2. reconfigure
new device in /dev/bus/usb

3. lookup new device

 docker run --privileged
 --net=host
 -v /dev:/dev ...

Offloading Model

● Offloading model takes long
(N ms to a few seconds)
○ Switching models during

runtime is not feasible
○ Solution

■ Pre-load models to
accelerator

■ Service for models
■ Distributed Pipeline

Accelerator

Accelerator

S
er

vi
ce

App1

App2

SSD
MobileNet

FaceNet

Service for Accelerator

● Input data is large
○ Uncompressed image (~0.5MB for 300*300 FP16 RGB)
○ Short living (<3s)

● Serving with shared memory between Pods
■ Host mountpoint of tmpfs (e.g. /dev/shm)
■ Bind mount sub-path into Accelerator service Pod and

application Pod
■ Use mmap to share input data

Host Node
Pod AccelSvc

Svc Container

/dev/shm/...

mmap file

Tensor (image)

mmap

Serving with shared memory

/dev/shm/...

mmap file

Pod App1bi
nd

 m
ou

nt execute

Accelerator

App Container

/dev/shm/...

mmap file

Tensor (image)

mmap

bind mount

Challenge - Real-time Processing

Real-time Processing

The Cost

Camera

33.33ms 33.33ms 33.33ms

SSD MobileNet 100ms

FaceNet

OpenCV Face
Detection 28ms (lbp)

16ms

6.7ms

JPEG Decode

Resize/Crop

Decision should be
effective with the most
recent camera image.

220ms

Real-time Processing

● Challenges
○ Effective decision within ~30ms delay
○ Home WiFi performance is inconsistent
○ Running pre-trained model takes long (even with

accelerators)

Note: Effective means the decision should be responsive. It
appears to be made within 30ms. Regardless of the actual time
the decision was based on, perhaps 100ms ago.

Effectiveness

1s delay

Frame from 1s ago Frame from Now!

● The label Person is still effective as there’s no change in the area;
● The label Car is no longer effective as the area has changed a lot.

Sequential Group 2

Sequential Group 1

Parallelize Pipeline

JPEG Image
640x480

OpenCV Face
Detection

FaceNet

Feature Matching &
Recognition

SSD MobileNet
Objects Detection

Resize/
Crop

MQTT

Intelligence &
Action

Decode Resize/
Crop

JSON
encoder

JSON
encoder

Neural Network

CPU Computing

Pre/Post processing

Message Bus

Input

Over WiFi

Colocate Compute & Data

● Label nodes by models
● Colocate Pods with related models using node affinity

Node1

Accelerator

SSD
MobileNet

Pod - Object
Detection

Tensor (Image)

Result

Node2

Accelerator

FaceNet

Pod - OpenCV
Face Detect

Tensor (Image)

Result

Duplicate Lightweight Tasks

● Replicate compressed image (JPEG) to all nodes
● Duplicate lightweight image pre-processing tasks

JPEG Image
640x480

Over WiFi

K8s Service

Node1
Receive

Decode

Resize/Crop

Node2
Receive

Decode

Resize/Crop

Node3
Receive

Decode

Resize/Crop

ReplicateReplicate

Load balancing

Map/Reduce is Possible

● Prerequisite: image replicated to all nodes
● Coordination: lead-election and MQTT

Node1
Leader

Node2
Follower

Node3
Follower

MQTT

Image
Slice 0Image

Slice 1
Image
Slice 2

Survive from poor WiFi

● Discard dated frames
○ Associate a sequence

from source (robot)
○ Only process the most

recent frame (skip others
if the previous pipeline
didn’t complete in time)

Incoming
Frames

Processing

Start

Start
Discarded!

Survive from poor WiFi

● TCP vs UDP
○ TCP accumulates delay when jammed, unable to skip
○ UDP is unreliable, good for skipping frames

● H264 vs JPEG
○ H264 takes low bandwidth (< 20KB), but less loss tolerable
○ JPEG takes high bandwidth (20 - 64KB), high loss tolerable

Challenge - On ARM

Kubernetes on ARM

Core Affinity

● Special problem on Big-Little architecture
○ CPU-intensive tasks scheduled on Big cores
○ Accelerator offload tasks scheduled on Little cores
○ Flipping over degrades performance

● No support from Kubernetes
○ Use core affinity inside the container
○ Maybe sub-optimal w.r.t the cluster-level scheduling

performance

Summary

Recapture and Takeaways

Summary

● Accelerator support
○ Privileged container

● Shared memory across Pods
● Affinity with Data Locality
● Replication across nodes

○ Input data (small size)
○ Pre-processing logic
○ Parallelism with data replicas

● Core affinity (heterogeneous architecture)

Yisui Hu, Google, 2018

