

● Organizations typically have a portfolio of applications
that are offered to end users over the Internet

● Kubernetes supports multiple ways of exposing
applications to the outside world

● Ingress is the answer if you are looking for layer 7 load
balancing

● Open sourced from co-development project with Yahoo Japan
Corporation subsidiary, Actapio

● Operate hundreds of services that are exposed to the Internet
● Run multiple OpenStack and Kubernetes clusters

Internet

Data Plane Envoy

Deployment Platform Kubernetes

Heptio Gimbal

Service Discovery
Routing
Rules

Heptio
Contour

Monitoring &
Alerts

Grafana

Prometheus

Internet

Let’s talk performance

● Millions of concurrent connections
● Thousands of services per datacenter
● Tens of thousands of endpoints per datacenter
● < 30ms P99 round-trip time latency

● Requests per second
● Concurrent connections
● Response payload size
● Number of services
● Number of endpoints
● Number of Ingress / IngressRoutes
● Number of proxy (Envoy) pods

● Data plane
● Control plane
● Discovery system
● Monitoring system

Micro-benchmarks
Understand the impact of a single variable on a specific subsystem.
For example: “Understand the effect of number of concurrent connections

 on response latency”

Macro-benchmarks
Understand the impact of “realistic” load on the system (or subsystem)
For example: “Understand the effect of 100k CC and 30k RPS on the
performance of the system”

Micro-benchmarks

Test Method: Adjust the number of concurrent connections in wrk2, and
observe effect on latency

Variable Under Test: # of Concurrent Connections

Test Cases: 10k, 25k, 50k, 100k, 250k, 500k, 1m

Expected: < 30 ms P99 Latency

Pros

● Helped us identify bottlenecks/bugs in Contour and the discovery
subsystem

Pros

● Helped us identify bottlenecks/bugs in Contour and the discovery
subsystem

● Gave us confidence that the control plane (Contour) could handle a large
number of Services, Endpoints, Ingress and IngressRoute

Pros

● Helped us identify bottlenecks/bugs in Contour and the discovery
subsystem

● Gave us confidence that the control plane (Contour) could handle a large
number of Services, Endpoints, Ingress and IngressRoute

● Time is your friend - Less time needed to setup and run

Cons

● Evaluates the system through a narrow lens

Cons

● Evaluates the system through a narrow lens
● Doesn’t necessarily reflect real world usage

Macro-benchmarks

● Test the system under “realistic” load
● Measure and evaluate multiple metrics
● Gives you an idea of where the bottlenecks are, and how the system

should be scaled to handle more load
● Depending on hardware availability, budget, etc, you might have to scale

the test down

Run tests at three different scales and ensure resource utilization scales
linearly

100k CC & 10k RPS 200k CC & 10k RPS 300k CC & 10k RPS

100k CC & 20k RPS 200k CC & 20k RPS 300k CC & 20k RPS

100k CC & 30k RPS 200k CC & 30k RPS 300k CC & 30k RPS

CC = concurrent connections
RPS = requests per second

56 cores
264 GB Ram
10 Gbps Network

56 cores
264 GB Ram
10 Gbps Network

56 cores
264 GB Ram
10 Gbps Network

wrk2
tcpkali
prometheus/grafana

envoy
contour
discoverers
prometheus/grafana

nginx
prometheus/grafana

● HTTP benchmarking tool with accurate latency measurements
● Can generate significant load from a single, multi-core machine
● Deployed as a Kubernetes Job
● https://github.com/giltene/wrk2

https://github.com/giltene/wrk2

● TCP load generator used to open thousands of connections
● Opens connections and keeps them open
● Much better at opening connections than wrk2
● Deployed as a Kubernetes Job
● https://github.com/satori-com/tcpkali

https://github.com/satori-com/tcpkali

● Used nginx as the target service
● Ran as a Kubernetes Deployment
● Ran tests against two variants: “vanilla” (600 bytes) and custom (22

kilobytes)
● Default configuration was inadequate for our load test

Results

Lessons Learned

● Create a plan that outlines what and how you are going to test
● Create a results table (or document) to capture the numbers you care

about
● Document the environment’s characteristics and specifications
● Keep a journal or scratchpad while you are running tests

● Prometheus and Grafana proved to be indispensable
● Envoy, Contour, Gimbal discoverers all produce useful metrics
● Node-level visibility via Prometheus node_exporter
● Create test-specific dashboards
● Metrics are key to understand the system under test
● Don’t fly blind

● Test should be in the order of minutes instead of seconds
● Allows all components in the test path to warm up
● Reduces network jitter over a long measurement period
● Prometheus can obtain a larger set of data points

● Understand your network’s capacity before running any tests
● Keep the capacity in mind when designing test cases
● The network will limit your testing if the pipes are overfilled
● For example, we observed very different performance when running on

AWS vs bare-metal lab
● Use iperf3 to measure network bandwidth

● The kernel can get in your way
● System and kernel logs can be helpful
● Can use init containers in Kubernetes

● Weird things will happen at scale
● Some might be one-offs, some might be actual issues
● Take a note of what happened
● Investigate, but make sure to set a timebox on it

● Resist temptation to automate everything from the get-go
● The test plan or strategy might change along the way
● Once the strategy is solid, document it
● Creating end-to-end automation might not be worth it

@alexbrand

heptio/gimbal | heptio/contour

