
On the path to
full Observability
with OSS

David Kaltschmidt
@davkals

Kubecon 2018

I’m David

All things UX at Grafana Labs

If you click and are stuck,
reach out to me.
david@grafana.com

Twitter: @davkals

mailto:david@grafana.com

Outline

● Quick Grafana intro

● Make an app observable
● Logging in detail

Grafana intro

Grafana

Dashboarding
solution

Observability platform

Unified way to
look at data
from different
sources

Logos of datasources

New graph panel controller to quickly iterate how to visualize

Troubleshooting journey

Instrumenting an app

App

● Classic 3-tiered app
● Deployed in Kubernetes
● It’s running, but how is it

doing?

Load balancers

App servers

DB servers

Add instrumentation

● Make sure the app logs enough
● Add Prometheus client library for metrics
● Hook up Jaeger for distributed tracing

Structured Logging
 logger = kitlog.NewLogfmtLogger(kitlog.NewSyncWriter(os.Stderr))
 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 since := time.Now()
 defer func() {
 logger.Log("level", "info", "msg", "query executed OK", "duration", time.Since(since))
 }()
 ...
 if fail {
 logger.Log("level", "error", "msg", "query lock timeout")
 }
 ...
 })

Add instrumentation

● Make sure the app logs enough
● Add Prometheus client library for metrics
● Hook up Jaeger for distributed tracing

Metrics with Prometheus
requestDuration = promauto.NewHistogramVec(prometheus.HistogramOpts{
 Name: "request_duration_seconds",
 Help: "Time (in seconds) spent serving HTTP requests",
 Buckets: prometheus.DefBuckets,
}, []string{"method", "route", "status_code"})

func wrap(h http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 m := httpsnoop.CaptureMetrics(h, w, r)
 requestDuration.WithLabelValues(r.Method, r.URL.Path,
strconv.Itoa(m.Code)).Observe(m.Duration.Seconds())
 }
}

http.HandleFunc("/", wrap(func(w http.ResponseWriter, r *http.Request) {}))

Add instrumentation

● Make sure the app logs enough
● Add Prometheus client library for metrics
● Hook up Jaeger for distributed tracing

Jaeger Tracing
cfg, err := jaegercfg.FromEnv()
cfg.InitGlobalTracer("db")

http.HandleFunc("/", wrap(func(w http.ResponseWriter, r *http.Request) {}))

go func() {
 errc <- http.ListenAndServe(dbPort,
 nethttp.Middleware(opentracing.GlobalTracer(), http.DefaultServeMux))
}()

Bonus: Set up tools

● https://github.com/coreos/prometheus-operator Job to look after
running Prometheus on Kubernetes and set of configs for all exporters
you need to get Kubernetes metrics

● https://github.com/grafana/jsonnet-libs/tree/master/prometheus-ksonne
t Our configs for running Prometheus, Alertmanager, Grafana together

● https://github.com/kubernetes-monitoring/kubernetes-mixin Joint
project to unify and improve common alerts for Kubernetes

https://github.com/coreos/prometheus-operator
https://github.com/grafana/jsonnet-libs/tree/master/prometheus-ksonnet
https://github.com/grafana/jsonnet-libs/tree/master/prometheus-ksonnet
https://github.com/kubernetes-monitoring/kubernetes-mixin

Live demo (screenshots follow)

RED method dashboard of the app

● You’ve been paged because the

p99 latency shot up from

<10ms to >700ms

● RED method dashboard is ideal

entrypoint to see health of the

system

● Notice also DB error rates,

luckily not bubbling up to user

Debug latency issue with Jaeger

● Investigate latency issue first

using Jaeger

● App is spending lots of time

even though DB request

returned quickly

● Root cause: backoff period was

too high

● Idea for fix: lower backoff

period

Jump to Explore from dashboard panel

● Still need to investigate DB

errors

● Jumping to Explore for

query-driven troubleshooting

Explore for query interaction

● Explore pre-filled the query

from the dashboard

● Interact with the query with

smart tab completion

● Break down by “instance” to

check which DB instance is

producing errors

Explore for query interaction

● Breakdown by instance shows

single instance producing 500s

(error status code)

● Click on instance label to

narrow down further

Explore for query interaction

● Instance label is now part of the

query selector

● We’ve isolated the DB instance

and see only its metrics

● Now we can split the view and

select the logging datasource

Metrics and logs side-by-side

● Right side switch over a logging datasource

● Logging query retains the Prometheus query labels to select the log stream

Explore for query interaction

● Filter for log level error using

the graph legend

● Ad-hoc stats on structured log

fields

● Root cause found: “Too many

open connections”

● Idea for fix: more DB replicas,

or connection pooling

Grafana logging in detail

Goal:
Keeping it
simple

https://twitter.com/alicegoldfuss/status/981947777256079360

https://twitter.com/alicegoldfuss/status/981947777256079360

More goals

● Logs should be cheap!

● We found existing solutions are hard to scale

● We didn’t need full text indexing

● Do ad-hoc analysis in the browser

Logging for Kubernetes

{job=”app1”}

{job=”app3”}

{job=”app2”}

Logging for Kubernetes (2)

{job=”app1”}

{job=”app3”}

{job=”app2”}

Like Prometheus,
but for logs

● Prometheus-style service

discovery of logging targets

● Labels are indexed as
metadata, e.g.: {job=”app1”}

Introducing
Loki

● Grafana’s log aggregation
service

● OSS and hosted

Introducing
Loki

https://twitter.com/executemalware/status/107
0747577811906560

https://twitter.com/executemalware/status/1070747577811906560
https://twitter.com/executemalware/status/1070747577811906560

Logging architecture

{job=”app1”}

{job=”app2”}

Node

Promtail

Loki

Loki
datasource

See Loki logs inside Grafana

● New builtin Loki datasource

● Prometheus-style stream

selector

● Regexp filtering by the backend

● Simple UI:

○ no paging

○ return and render 1000

rows by default

○ Use the power of Cmd+F

See Loki logs inside Grafana

● Various dedup options

● In-browser line parsing support

for JSON and logfmt

● Ad-hoc stats across returned

results (up to 1000 rows by

default)

● Coming soon: ad-hoc graphs

based on parsed numbers

Release Loki

Loki OSS:
https://github.com/grafana/loki

Hosted Loki:
https://grafana.com/loki

All You Can Log trial
free until Q2, 2019

https://github.com/grafana/loki
https://grafana.com/loki

Enable Explore UI (BETA)

Logging UI is behind feature flag. To enable, edit Grafana config.ini file

[explore]

enabled = true

Explore will be released in Grafana v6.0 (Feb 2019)

Loki can be used today

Feedback welcome: @davkals or david@grafana.com

mailto:david@grafana.com

Integrate Tracing

● Associate traces with logs and metrics

● Labels and Exemplars FTW

● Aiming for Q2 2019

One last thing...

https://www.grafanacon.org/2019/ Discount $100 off: KUBECON-LOKI-GRAF

Expires Dec 19Feb 25-26 2019

https://www.grafanacon.org/2019/

Tack for
listening

UX feedback to
david@grafana.com
@davkals

mailto:david@grafana.com

Tack for
listening

UX feedback to
david@grafana.com
@davkals

& LOGS

mailto:david@grafana.com

