
Nezha: A Kubernetes Native Big Data 

Accelerator For Machine Learning 

1

Huamin Chen - Red Hat

Yuan Zhou - Intel

Dec, 2018 



Agenda

• Background and Motivations

• Architecture Overview

• Use Cases in kubeflow(Deep Learning) and Spark-

SQL(Data Analytics)

• Summary & Next Step



Deep Learning Accelerators

• Hardware Accelerator
– CPU, GPU, TPU, FPGA

• Software Accelerator
– Better Algorithms

– In-memory Software Stack



While Compute Is Accelerated

Source: https://nar.ucar.edu/2017/ral/gpu-accelerated-

microscale-modeling-fasteddy

http://accelerated-microscale-modeling-fasteddy


Data Link Is Lagging

Dataset 

Name

Size Download Time Training Time

(with GPU)

MNIST 10+M 0.5~2 minutes minutes

CIFAR 

10/100

100+M 2~30 minutes minutes

COCO 

2017

26G 2~Many hours hours~days



How to Accelerate Data Link?

Solution Comment

Build a customized filesystem • Take years to succeed

• Very configuration dependent

Cache Dataset on Compute node At the expense of cost, flexibility, 

and mobility

Nezha: On-demand cache Kubernetes native, run 

everywhere, application 

transparent



Project Goals

• Nezha aims to accelerate large dataset download 
and extract to keep input pipeline at high rate.
– Network：Reverse Proxy Cache

– I/O: Bring data close to compute

• Kubernetes Native
– Services, Deployments, HostAlias, Persistent Volumes, 

and WebHook.

• (Almost) transparent to end users!

–Though TLS certificate issue requires some head 
scratching...



A Walk of Deep Learning Training
Download and extract:

• Training and test datasets

• Pre-trained models

• Checkpoints

Create Neural Networks

Generate trained models

Checkpoint

Network and

I/O Bound

Compute Bound



Nezha Architecture

Data 

source

A

Data 

source

B

Data 

source

C

Reverse 

Proxy 

Cache

Pods

Pods

Hostalias injector 

webhook

1.2.3.4 example.com

1.2.3.4 example.com

Data 

path

Inject

https://github.com/fast-ml/nezha

https://github.com/fast-ml/nezha


Nezha: No More Data Silos
• Nezha aggregates data sources, brings consistent

I/O performance and high availability, without big 
price ticket or proprietary technologies.

Data 

source

A

Data 

source

B

Data 

source

C

Nezha

Pods

Pods



Nezha Deployment Model 1: Centralized

Data 

source

A

Data 

source

B

Data 

source

C

Reverse 

Proxy 

Cache

Pods

Pods

Hostalias injector 

webhook

1.2.3.4 example.com

1.2.3.4 example.com

Data 

path
Reverse 

Proxy 

Cache
Reverse 

Proxy 

Cache



Nezha Deployment Model 2: Sidecar

Data 

source

A

Data 

source

B

Data 

source

C

Reverse 

Proxy 

Cache

Application 

Container

Application 

Container

Hostalias and sidecar 

container

injector webhook

1.2.3.4 example.com

1.2.3.4 example.com

Reverse 

Proxy 

Cache



Deployment Comparision

Non Nezha Nezha: 

Centralized

Nezha: 

Sidecar

Network 

Performance

Subject to external network 

performance

Subject to 

internal network 
performance

Subject to 

local container 
network 
performance

Data Availability All compute tasks are subject to 

data source and network 
availability

All compute 

tasks are 
subject to proxy 
container 

availability

Individual compute 

task is subject to its 
sidecar container 
availability



Deploy Nezha in Kubernetes

• Instructions can be found at github repo

• Get to know what labels the applications use

• Kubeflow job deployed by ksonnet has the following 

signature



Configuration in the ConfigMap

Kubeflow label

Proxy service IP

Upstream servers



Hostaliases Injection in Action



Bigdata analytics are moving to cloud

20162006 201520142008

oss://adl://
wasb://gs://s3:// s3n://

s3a://

Hadoop Compatible File System abstraction layer: Unified storage API interface Hadoop fs –ls s3a://job/



Hadoop object store connector

• Bigdata can now talk to public object stores directly

–S3a: Amazon Simple Storage Service

–Wasb: Windows Azure Storage Blob

–Adl: Azure Data Lake Store

–Gs: Google Cloud Storage

• Usually data reading is slower due to separate 

storage networking



Example Nezha Deployment For S3 caching

Kubelet

Compute networking

Kubelet Kubelet Kubelet KubeletDNS Server
K8s master

Spark Driver Presto Diver Spark Woker Presto Worker Spark Worker

Public/Private

S3

Storage networking

Nezha



Intel Optane DC Persistent Memory



Intel DCPMM Application Latency

Source: https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel

https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel


Kubernetes CSI plugin for Intel DCPMM

• A new CSI plugin for Intel DCPMM

–Dynamic provisioning of node-local AEP memory in 
Kubernetes as block devices, as specified by Kubernetes CSI 
specification

• Working on this now!
–https://github.com/intel/pmem-CSI

–Go to Intel booth for more details 

https://github.com/intel/pmem-CSI


Summary & Next Steps

• Nezha is a Kubernetes Native Big Data Accelerator 

to improve the input data performance

• HostAlias and webhook used thus it’s transparent for 
application 

• Applies to ML/DL workloads, as well as bigdata 

analytics based on object storage

• Next steps
–HTTPS/TLS support

–Explore I/O acceleration via Sidecar container + Burst Buffer


