

Natural Language Code Search With Kubeflow

2018/12/12

Hamel Husain(hamelsmu@github.com) & Jeremy Lewi (<u>ilewi@google.com</u>)

http://bit.ly/kubecon code search 2018

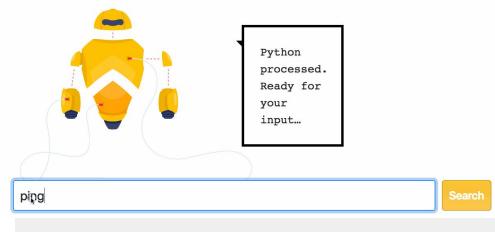
Agenda

Summary: Kubeflow makes it easy to build and deploy ML products.

- Intro: Building Natural Language Code Search At GitHub
- Why Kubeflow?
 - Productionizing ML takes too long
- What is Kubeflow?
 - A Kurnetes native platform for ML
- Walk through how Kubeflow can accelerate turning experiments into production
- Demo
- Summary

Idea: Semantic Code Search

- Build a way to search code using natural language.
- Query: Natural language describing what code does
- Result: relevant code matching the query
- <u>Code</u> (kubeflow/examples)
- Blog Post by Hamel Husain



 https://experiments.github.com/semantic-cod e-search

Going from an idea to a product

Prototype MVP With Demo In Jupyter Notebook: **2 Weeks**

https://github.com/hamelsmu/code_search

Demo with front-end mockup with blog post: +3 Days

https://towardsdatascience.com/semantic-code-se arch-3cd6d244a39c

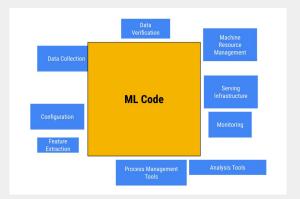
Experiments.Github.Com: +3 Months

https://experiments.github.com/

Perception: ML Products are mostly about ML

- "Someone else" will take care of production
- Most time & effort is spent building the model
- Data Science teams often given headcount and resourced that reflect this understanding of the world
- There isn't as big of a data scientist shortage as you think!.

Team structure reflects perception



GitHub Circa August 2018:

- 10 Data Scientists
- 1 Front End, 1 Data Engineer
- No ML Infra. DIY

Datascientists

Devops

Reality:

- Infrastructure/DevOps team want to know a model is useful before investing in productinization
- Datascientists often don't know if a model is really useful without launching it
- Building the model is often the least costly step of productionization
 - o 2 weeks to build model in notebook
 - 3 months to launch on experiments.com

ML Requires DevOps; lots of it

Kubeflow: A platform for building ML products

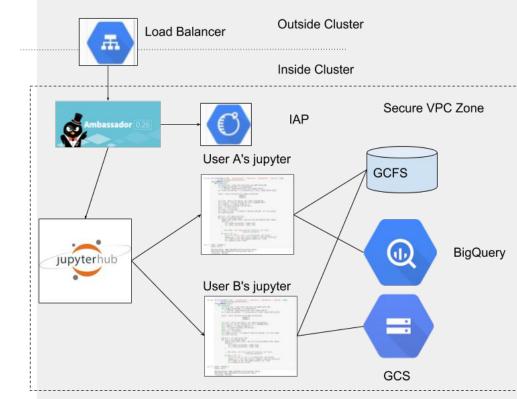
- Leverage containers and Kubernetes to solve the challenges of building ML products
 - Reduce the time and effort to get models launched
- Why Kubernetes
 - Kubernetes has won
 - Kubernetes runs everywhere
 - Enterprises can adopt shared infrastructure and patterns for ML and non ML services
 - Knowledge transfer across the organization
- Kubeflow is open
 - No lock in
 - 120+ Members
 - 20+ Organizations
 - Stats available @ http://devstats.kubeflow.org

ML Components

- Goal: components for every stage of ML
- Examples:
 - Experimentation / Data Exploration
 - Jupyter/JupyterHub
 - Training
 - K8s CRDs for distributed training for PyTorch & TFJob
 - Katib For HP Tuning
 - Inference
 - Beam transforms for batch inference
 - Workflows:
 - Pipelines
 - Feature Store
 - Feast (from GOJEK)

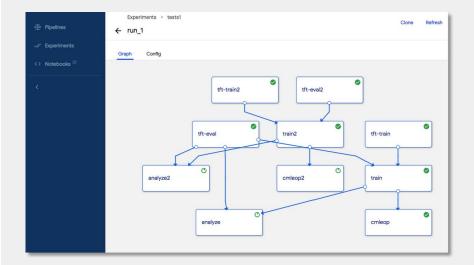
Deployment

- Make it easy to deploy components as a cohesive platform
 - CLI kfctl
 - Web UI
- Web UI currently GCP only
 - Ask your vendor to add support
 - See current members at
 - https://github.com/kubeflow/com munity/blob/master/member org anizations.yaml



Pipelines

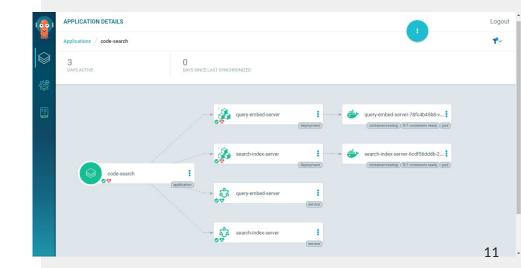
- Define complex ML workflows
 - o in Python
- Run pipelines regularly
- Visualize all runs and track all the results
- Example
- Powered by Argo



```
tfteval = dsl.ContainerOp(
    name = 'tft-eval',
    image = 'gcr.io/google-samples/taxi',
    arguments = [ "--input_handle", ...]
    )
tfttrain = dsl.ContainerOp(...)
tftrain.after(tfteval)
```

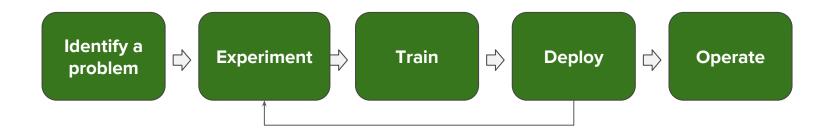

Argo CD

- Declarative Continuous Delivery for Kubernetes
- Keeps resources in a cluster in sync with manifests in a git repository



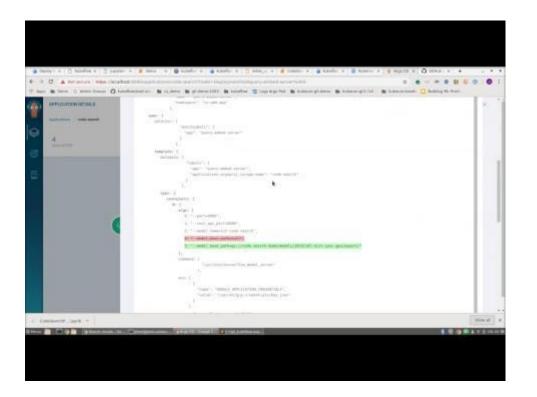
Going from an idea to production

- Multiple steps involved in building the model
- Each step has different resource requirements
 - Resource management is a big problem
- Application consists of multiple microservices



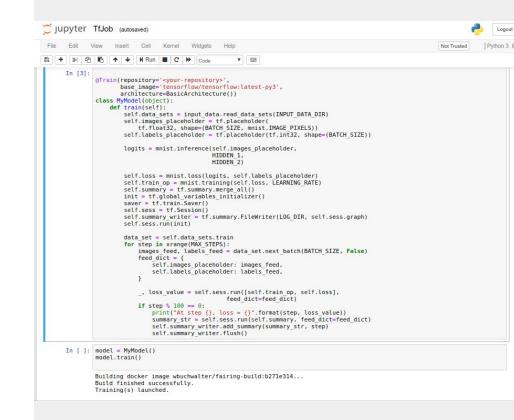
Demo

Demo Video



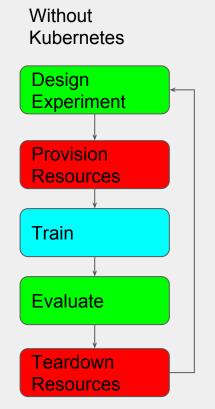
Notebooks & Kubeflow

- Easily launch notebooks via UI
- Fairing is a library that makes it easy to use K8s from a notebook
 - Notebook -> container -> TFJob
- Datascientists can leverage K8s without knowing K8s
- Started by Microsoft
- Inspired by Lyft Learn
- Kudos Arrikto for the new JupyterHub spawner UI

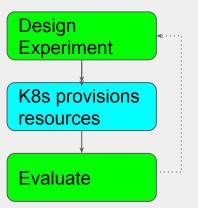


Training

- Scale horizontally
 - Multiple experiments
 - Different vocab sizes, loss functions
 - TFJob for Distributed Training
- Scale vertically
 - Multiple GPUs (K80, P100, V100, T4)
- Multiple users
- Kubernetes takes care of resource management so datascientists can focus on experiment design & analysis

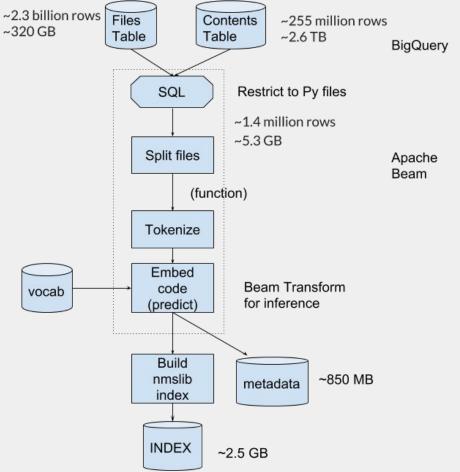


With Kubernetes



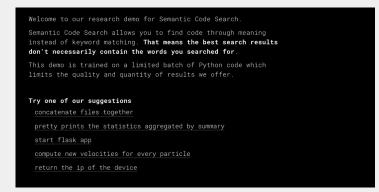
Offline Inference

- Embeddings for all python functions (possible search results) are precomputed
- Embeddings are indexed using nmslib to enable fast lookup in response to a query
- Scale out & up
 - Beam Job = 347 vCPU hr
 - Build nmslib index ~28 GB Ram

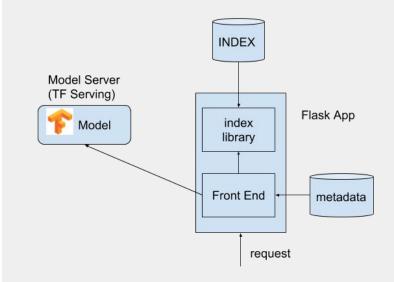


Online Inference

- TFServing to compute query embeddings
- Index server provides fast lookup
- Launching a public experiment is costly
 - ~ 3 months
 - No devops support
 - Security concerns
- So much room for improvement!
 - GitHub building our Kubeflow infra.



https://experiments.github.com/semantic-code-search



Keeping the index fresh

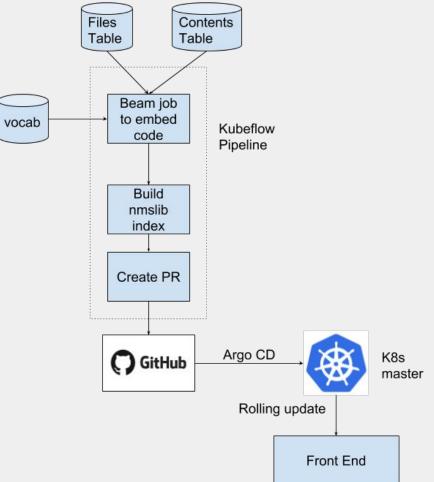
- Code is constantly changing in GitHub
- If we don't update the index frequently quality of the results will deteriorate
- Common problem in ML products

GitHub commits per day

From BigQuery table bigquery-public-data.github_repos.commits

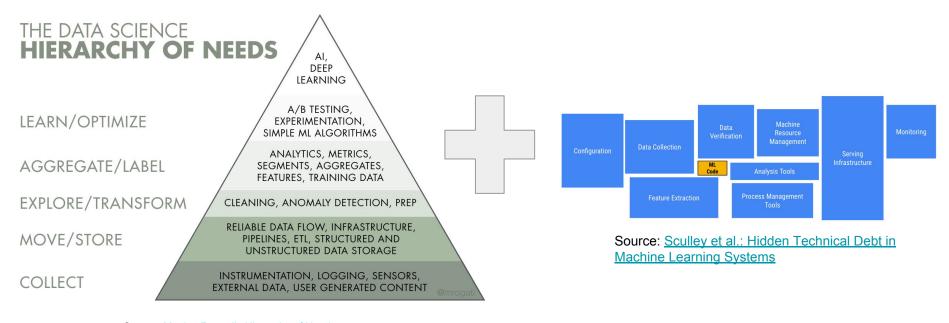
Updating the Index

- Use Kubeflow pipelines to periodically run the steps to compute the index
- Pipeline creates a PR updating the index served by the front end
- Argo CD synchronizes the deployed infrastructure
- Pipeline code:
 https://github.com/kubeflow/examples/
 tree/master/code_search/pipeline



State of ML in Industry

You Probably Don't Need To Hire Another ML-Data Scientist



Source: Monica Rogatti's Hierarchy of Needs

Special Thanks

Sanyam Kapoor - Google Intern Ported model to Kubeflow

Yang Pan - Googler who build the pipeline

Chris Beitel - Director ML Research UCSF - Helped with training training the model

Lukasz Kaiser and Ryan Sepassi - Googlers behind Tensor2Tensor; helped with model design with T2T

Jesse Suen and Danny Thomson - Intuit engineers working on Argo CD and integration with Kubeflow

ML and Kubeflow Related Talks

12/11 11:40 - 12:15 <u>Using Kubernetes to Offer Scalable Deep Learning on Alibaba Cloud</u> Kai Zhang & Yang Che

12/11 13:45 - 15:10 <u>Tutorial: Kubeflow End-to-End: GitHub Issue Summarization</u> chasm@ amyruh@

12/11 15:40 - 16:15 Machine Learning as Code: and Kubernetes with Kubeflow jaysmith@ aronchick@

12/11 16:30 - 17:05 Why Data Scientists Love Kubernetes Sophie Watson & William Benton

12/12 10:50 - 11:25 Natural Language Code Search for GitHub Using Kubeflow jlewi@ & Hamel

Husein

12/12 11:40 - 12:15 Nezha: A Kubernetes Native Big Data Accelerator For Machine Learning Huamin Chen & Yuan Zhou

12/12 14:35 - 15:10 Eco-Friendly ML: How the Kubeflow Ecosystem Bootstrapped Itself Peter MacKinnon

12/12 15:40 - 16:15 Deep Dive: Kubeflow BoF

Kubeflow Related Booths

- Agile Stacks (Booth S/E 22)
 - See a demo of automated deployment of Kubeflow and ML pipelines on AWS and on-prem bare metal, tightly integrated with infrastructure services for scheduling, monitoring, logging, data management, storage, and security.
- Arrikto (Booth S/E 43)
 - Come see a multi-cloud ML workflow (ingress of multi-GB data, pre-processing, distributed training, and inference in distinct locations) with Kubeflow + Arrikto!
- One Convergence (Booth S/E49)
 - OnPrem Deep Learning as a Service

More Info

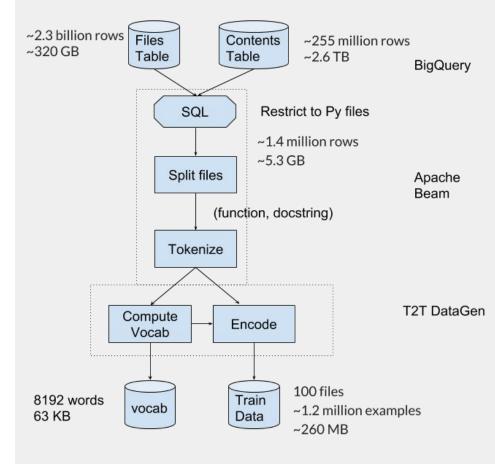
- Kubeflow Docs https://www.kubeflow.org/
- Code https://github.com/kubeflow/examples/tree/master/code-search
- GitHub Experiments https://experiments.github.com/
- Argo CD- https://github.com/argoproj/argo-cd
- Tensor2Tensor https://github.com/tensorflow/tensor2tensor

Thank You

Appendix: Extra Slides

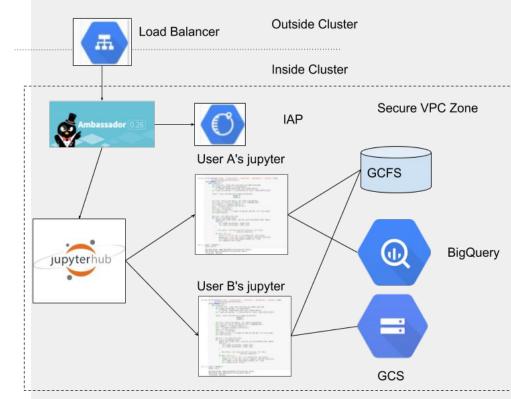
Data Preparation

- 3 Different compute engines involved
 - SQL(BigQuery)
 - Beam(Dataflow)
 - T2T Binary (K8s Job)
- Beam Job ~108 vCPU hours
 - Need to scale vertically and/or horizontally
 - Kubernetes enables both



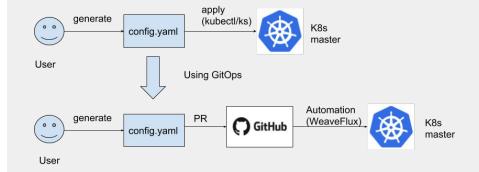
Deploying notebooks

- Easily launch notebooks
- Access notebooks securely: https://kubeflow.acme.com/jupyter
- Shared storage (NFS) for collaboration
- Connect to data warehouse
- Enforce enterprise security policies



Enable GitOps for ML

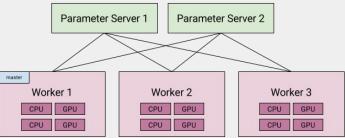
- Fully declarative
- kfctl is a two step process
 - Create configs
 - Apply configs
- GitOps reduces the toil of managing infrastructure
 - Automation (e.g. WeaveFlux)
 keeps infrastructure up to date
 - Allows for automatic policy enforcement



TFJob

- Integrates TF distributed training and estimator API with K8s
- Use K8s to scale out training and leverage accelerators
- TF specific controller takes care of managing all the K8s resources
 - K8s services
 - Pods
- Users benefit from K8s toolchain
 - kubectl for CLI
 - K8s dashboard for monitoring

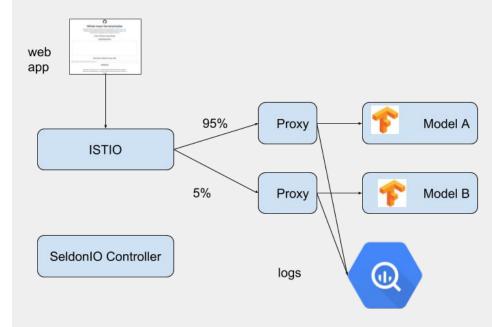
apiVersion: kubeflow.org/v1alpha2 kind: TFJob metadata: name: tf-job-simple namespace: kubeflow spec: tfReplicaSpecs: Workers: replicas: 3 template: spec: containers: - image: acme/myjob



TFServing

- Collaborating with TF to create a K8s native story for TFServing
- Adding prometheus exporter for metrics
- ISTIO for telemetry and traffic splitting
- Opportunity to leverage K8s to simplify pushing models
 - Need to measure model quality
 - Global rollout needed to uniformly sample traffic across

model push ≠ binary push

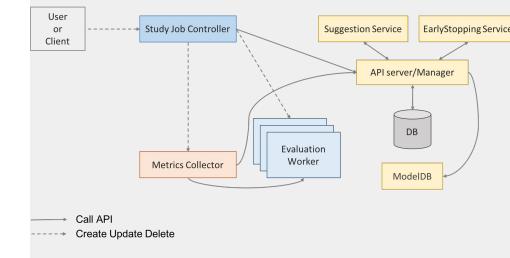


GPU Serving

- NVIDIA Inference Server Optimized for GPUs
- Using TF Serving

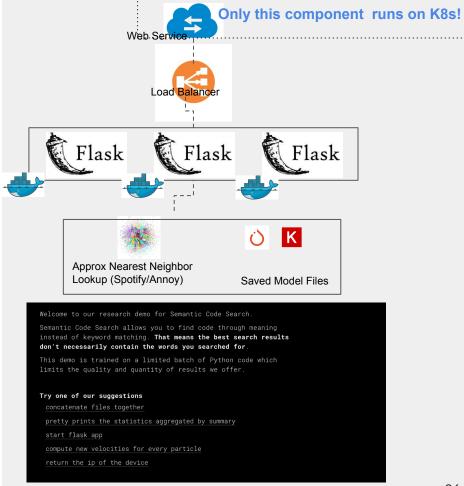
Katib(HP Tuner)

- Pluggable microservice architecture for HP tuning
 - Different optimization algorithms
 - Different frameworks
- StudyJob (K8s CR) (<u>example</u>)
 - Hides complexity from user
 - No code needed to do HP tuning



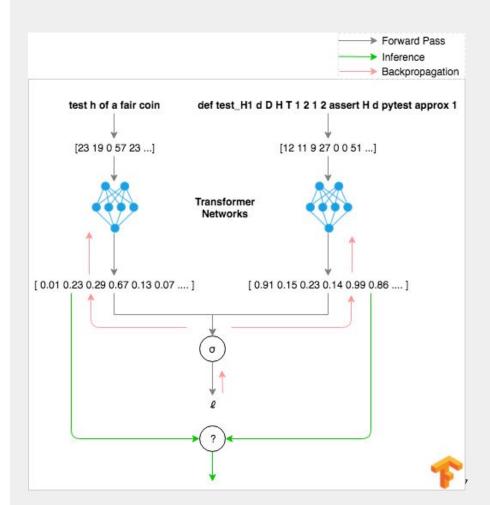
Experiments.GitHub.com

- Launching a public experiment is costly
 - No devops support
 - Security concerns
- So much room for improvement!
 - Currently building our Kubeflow infra.
- ~ 3 months



The model

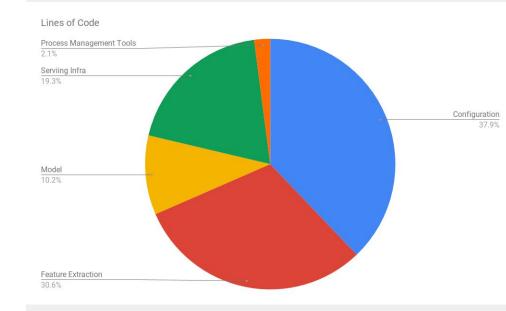
- Model embeds search query and code in the same space
 - predicts how well the code matches the query
- Built on Tensor2Tensor library of models



Code Breakdown

- Building ML productions requires lots of devops
- Kubeflow makes it easy to build ML products using Kubernetes

Most code & config is not related to the model



Big industry challenge

ginablaber @ginablaber

The story of enterprise Machine Learning: "It took me 3 weeks to develop the model. It's been >11 months, and it's still not deployed."

@DineshNirmalIBM #StrataData #strataconf

10:19 AM - 7 Mar 2018

