
1

@warheadsse @gitlab

Monolith to Microservice: pitchforks not included

Learn how GitLab turned it’s omnibus into cloud native Helm charts by way of containerization
and orchestration. This talk aims to help practitioners already running large scale, successful
products make decisions on how to move to microservices while maintaining product
development cadence and serving customers on legacy software everyday. It’s like driving a
race car and fixing it as you are competing in a race, without pit stops.

We will cover:
● How we made the application stack capable of scaling via containerization, through many

changes to stateful behaviors.
● Why we made the changes from an architectural view.
● How on earth we accrued the technical debts we had to fix in the first place.
● Most importantly, we’ll demonstrate why the monolith concept was the right place to start,

but Kubernetes is our future.

2

@warheadsse @gitlab@warheadsse @gitlab

Monolith to Microservice:
Pitchforks not included

about.gitlab.com

https://about.gitlab.com

3

@warheadsse @gitlab

$ whoami

Jason Plum
Senior Distribution Engineer

@WarheadsSE
gitlab.com/warheadsse
linkedin.com/in/jplum

● Develop and maintain install methods
○ Omnibus GitLab
○ GitLab Helm charts

● History in containerization
○ Pushing Docker forward since 2013
○ Docker on ARM
○ Does anyone know what '-bip' does?

● More than 1 year building one of the
most complex Helm charts available

https://about.gitlab.com/install/
https://github.com/moby/moby/issues?utf8=%E2%9C%93&q=mentions%3AWarheadsSE+
https://github.com/moby/moby/pull/3178

4

@warheadsse @gitlab

Overview

TL;DR: Here’s the gist, but you’ll miss the rest.

● Reality of GitLab as a complete solution
● Evolution of a Monolith
● Outgrowing tradition

○ Scaling
○ Sharding

● New approaches
○ Gitaly
○ Containerization
○ Object storage

● Understanding new challenges
○ Requirements
○ Scaling
○ Resilience

5

@warheadsse @gitlab@warheadsse @gitlab

What is GitLab?

6

@warheadsse @gitlab@warheadsse @gitlab
What is GitLab

7

@warheadsse @gitlab@warheadsse @gitlab
What is GitLab

End User Engineering

File systems
Databases(s)

Memory stores
Containers

Automation
Coordination
Networking

Load

8

@warheadsse @gitlab@warheadsse @gitlab

In the beginning ...

9

@warheadsse @gitlab@warheadsse @gitlab
Monoliths are not bad

Monoliths make sense, while viable

● Clear focus for Minimum Viable Product (MVP)
● Adding features is simple
● Everything in one bundle

10

@warheadsse @gitlab@warheadsse @gitlab
Monoliths are not bad

Advantages of Omnibus

● Full-stack bundle provides all components necessary to use every feature of GitLab
● Simple to install
● Components can be individually enabled/disabled
● Easy to distribute
● Highly controlled, version-locked components
● Guaranteed configuration stability

11

@warheadsse @gitlab

Monoliths

Massive, singular, unwieldy

Omnibus GitLab provides a single source of truth and
configuration, for everything about GitLab.

We use it. Our customers use it.

It is massive.

12

@warheadsse @gitlab@warheadsse @gitlab

Let me tell you a story ...

13

@warheadsse @gitlab@warheadsse @gitlab
Git is hard

14

@warheadsse @gitlab@warheadsse @gitlab
Git is hard

Key Concepts

● Snapshot based: stores complete copy of every version of a file
● Number of files: Indexes, pointers, pack files.
● Scale: Bigger = Slower

15

@warheadsse @gitlab@warheadsse @gitlab
Git is hard

Example Case

● Clone torvalds/linux.git
● Checkout a branch (any)
● Diff master

How many files were read?

16

@warheadsse @gitlab@warheadsse @gitlab
Git is hard

Branch and Merge Request

● Change files, stage commits.
● Push these to your remote.
● Now view this in a 'diff' view in the GitLab UI

17

@warheadsse @gitlab@warheadsse @gitlab

Now multiply by 10,000

18

@warheadsse @gitlab@warheadsse @gitlab
The hard parts

Solving Disk

Spread the load

Faster! Faster! Faster!

So many widgets!

19

@warheadsse @gitlab@warheadsse @gitlab
The hard parts

Solve one, cause another

● Sharding disk with NFS
● Off the disk, onto the network

Only two problems:

1. Disk IO
2. Network Throughput
3. NFS

20

@warheadsse @gitlab

Monoliths have limits

Massive, singular, unwieldy

At a certain scale, they start to tip over

21

@warheadsse @gitlab

Old problem,
New answer

Gitaly

gRPC based network service for Git

22

@warheadsse @gitlab@warheadsse @gitlab
Gitaly

Significant gains

● Throughput requirement significantly reduced
● Service nodes don’t need disk access
● Optimize for the specific problem

We’ve propped the Monolith up!

Now we can focus on other bottlenecks

23

@warheadsse @gitlab@warheadsse @gitlab

Forward!

24

@warheadsse @gitlab@warheadsse @gitlab
Choke points

Integrating Gitaly exposes less urgent bottlenecks

● NFS shards still used for traditional files
● Does every node need to have NFS??

Solution:
● Object Storage

25

@warheadsse @gitlab@warheadsse @gitlab
Separate Pets & Cattle

26

@warheadsse @gitlab

Pets

Configured Omnibus at scale

When deployed at scale, each VM has all roles
available, but only small portions activated.

27

@warheadsse @gitlab

Cattle

Containerized Services

Component Docker images provide lower resource
requirements.

Each component is directly configured, resulting in
startup as short as 5 seconds.

28

@warheadsse @gitlab@warheadsse @gitlab
Legacy Debt

Some services remain coupled

● Sharing is caring
● Speak <UNIX> sockets to me

29

@warheadsse @gitlab@warheadsse @gitlab

< time constraints >

30

@warheadsse @gitlab@warheadsse @gitlab
New Problems

Can we define individual component requirements?
Resources:

CPU?
Memory?

Network:
Throughput?
Services?

31

@warheadsse @gitlab@warheadsse @gitlab
New Problems

What do we use for load balancing?
Which services?
Which providers?

32

@warheadsse @gitlab@warheadsse @gitlab
New Problems

Scaling:
Horizontal or vertical?
Automatic or manual?

33

@warheadsse @gitlab@warheadsse @gitlab
New Problems

Resilience:
What happens when things go boom?
How to recover?
How to plan!

34

@warheadsse @gitlab@warheadsse @gitlab

1. GitLab’s beginnings as a monolithic project provided the means for
focused acceleration and innovation.

2. The need to scale better and faster than traditional models caused us to
reflect on our choices, as we needed to grow beyond the current
architecture to keep up.

3. New ways of doing things require new ways of looking at them. Be open
minded, and remember your correct choices in the past could not see the
future you live in.

Summary

35

@warheadsse @gitlab@warheadsse @gitlab

Questions?

36

@warheadsse @gitlab@warheadsse @gitlab

THANK YOU! This story is based on
gitlab.com/charts/gitlab

Comes see GitLab

Booth S44

Jason Plum
Senior Distribution Engineer

@WarheadsSE
gitlab.com/warheadsse
linkedin.com/in/jplum

37

@warheadsse @gitlab

Resources

Cloud Native GitLab

● gitlab.com/charts/gitlab/
● docs.gitlab.com/ee/install/kubernetes
● about.gitlab.com/kubernetes/

Gitaly
● The road to Gitaly v1.0
● gitlab.com/gitlab-org/gitaly

https://gitlab.com/charts/gitlab/
https://docs.gitlab.com/ee/install/kubernetes
https://about.gitlab.com/kubernetes/
https://about.gitlab.com/2018/09/12/the-road-to-gitaly-1-0/
https://gitlab.com/gitlab-org/gitaly

