
Monitor The World
Meaningful Metrics for Kubernetes
Applications and Clusters



Agenda

• Kubernetes Monitoring Intro

• Applications

• Control Plane

• Monitoring at Planet Labs



Who am I?

• Currently working on Amazon EKS

• Formerly worked at two Seattle startups using Kubernetes, Porch and OfferUp



Why

• Problem Detection

• Outage Prevention

• Optimization

• I am Nosy



Its Hard

• Many Microservices

• Many Containers

• Many Perspectives



A Method to the Madness

• Resources
• USE method by Brendan Gregg
• For every resource, check:

• Utilization
• Saturation
• Errors

• Services
• RED method by Tom Wilkie
• For every service, monitor request:

• Rate
• Errors
• Duration



Metrics Environment

Node A

Pod

Kubelet

Cluster
Autoscaler

Node 
Problem 
Detector

Node 
Exporter

Node B

Pod

Kubelet

HPA

Node 
Problem 
Detector

Node 
Exporter

Prometheus Kube
State 

Metrics

Pod Metrics
Server

fluentdgrafana



Applications



Start with Your Users

Business Metrics
• Orders fulfilled successfully
• Rides completed
• Pictures taken and sent to earth

Application Request Errors
• Tells you where to start
• Use tracing and logs to determine where to look next

Application Latency
• Critical measurement of user experience



A Complete Picture

Know Your Code and Configuration Version
• Know what version your code is, and where it has been deployed
• The same goes for configuration!
• Add a version label to your PodSpecs

sum(kube_pod_labels{label_version != "", label_app = ”myapp"}) by (label_version)

Request Rate & Saturation



Resources

• Consume from Kubelet (over Kube State Metrics)
• From Kubelet:

• container_cpu_usage_seconds_total
• container_memory_working_set_bytes
• kubelet_volume_stats_available_bytes



Kube State Metrics

Container restarts
• kube_pod_container_status_restarts_total

Pods % available 
• kube_deployment_status_replicas_available / kube_deployment_status_replicas
• kube_poddisruptionbudget_status_current_healthy / 

kube_poddisruptionbudget_status_desired_healthy



The Control Plane



The Bare Minimum

RED for API Server

Kube System Availability

Etcd Availability



As Your Cluster Scales

API Server Resource Usage
• Do you see dropped requests?
• Should you adjust --target-ram-mb and --max-requests-inflight?
• requests and limits based on object churn, node count, pod density.

API Server clients
• --kube-api-burst
• --kube-api-qps



As Your Cluster Scales

Scheduling Latency
• From Kube State Metrics:

• kube_pod_status_scheduled_time
• From Kube Scheduler:

• scheduler_e2e_scheduling_latency histogram

Controller Work Time
• From Controller Manager:

• *_work_duration
• *_queue_latency



Etcd

Leader Elections
• etcd_server_has_leader
• etcd_server_leader_changes_seen_total

Disk Write Performance
• etcd_disk_wal_fsync_duration_seconds_bucket
• etcd_disk_backend_commit_duration_seconds_bucket



Etcd

Database Size
• When etcd_mvcc_db_total_size_in_bytes reaches the quota limit, 

etcd will trigger a NOSPACE alarm

Corruption
• --experimental-initial-corrupt-check



Mailiao Refinery, Taiwan – May 31, 2016

Nic Cope
Kubernetes Infrastructure Lead



Jeddah, Saudi Arabia

● ~70 engineers

● Tens of services

● Five person Kubernetes team, aka Hobbes



“Welcome to your first day at Planet! Can you have a ~5,000 
node Kubernetes cluster running in a quarter?”



Great Barrier Reef, Australia – July 8, 2016

Our Monitoring Philosophy



Page only when clustomers are affected.



Page only when software won’t fix it.



Page only the team who can fix it.



Great Barrier Reef, Australia – July 8, 2016

What we monitor





Jeddah, Saudi Arabia

● Clustomers instrument their own services.

● Hobbes provides standard metrics: service 
mesh health, state of Kubernetes, service 
costs.

● Clustomers define their own alerts.



Great Barrier Reef, Australia – July 8, 2016

But where is Prometheus?



Jeddah, Saudi Arabia

● It’s difficult to balance under vs over alerting.

● Look deeper when clustomers ask for 
observability functionality.

● It’s hard to beat Prometheus when it comes to 
monitoring cloud native software.



Summary
• Kubernetes monitoring environment is complex.

• Start with the metrics that effect your users.

• Scaling your cluster involves reactively tuning based on some 
important metrics.

• It helps to approach your metrics environment with a method 
and philosophy that works for you and your organization.



Thank You!
nic@amazon.com
https://twitter.com/Nck_T
https://github.com/nckturner

negz@planet.com
https://twitter.com/internegz
https://github.com/negz

Draino http://github.com/planetlabs/draino
Kostanza http://github.com/planetlabs/kostanza

Grab us after for questions/feedback/beers/etc.

mailto:nic@amazon.com
https://twitter.com/Nck_T
https://github.com/nckturner
mailto:negz@planet.com
https://twitter.com/internegz
https://github.com/negz
http://github.com/planetlabs/kostanza



