
 Google Cloud Platform

CRDs Aren’t Just For Addons
KubeCon NA, Seattle
12/2018

Tim Hockin <thockin@google.com>
Principal Software Engineer
@thockin

(c) Google LLC

 Google Cloud Platform

 NOTE: This talk is forward looking

 Google Cloud Platform

Started as a way to prototype new features for
Kubernetes itself, and for users to leverage some of
our API machinery

Why?
• Kube-style APIs are simple and powerful
• We already have an API server (and storage)

Limited: No schema, validation, defaulting

Result: a 2nd class experience

History of CRD (née TPR)

 Google Cloud Platform

As limited as it was, it was useful

People started creating really interesting
software-robots to automate things: “operators”

Custom abstractions to control almost anything

Often used for managing stateful apps

Driven by declarative APIs, actuated
asynchronously by controllers

Birth of the Operator pattern

 Google Cloud Platform

Webhook admission controllers
• Mutating (set values, e.g. defaults)
• Validating (synchronous input validation)

Schema
• OpenAPI v3 schema definition
• Declarative validation (simple)

Almost all the pieces are in place to
make truly native-feeling APIs

Becoming more native

 Google Cloud Platform

Webhook admission controllers
• Mutating (set values, e.g. defaults)
• Validating (synchronous input validation)

Schema
• OpenAPI v3 schema definition
• Declarative validation (simple)

Almost all the pieces are in place to
make truly native-feeling APIs
WITHOUT changing Kubernetes code!

Becoming more native

 Google Cloud Platform

Being used for out-of-tree, third-party things
• Add-ons
• Stateful orchestration (e.g. MySQL)
• Domain-specific APIs (e.g. Istio)
• Higher levels of abstraction (e.g. kNative)

The role of CRDs in Kubernetes

 Google Cloud Platform

Being used for out-of-tree, third-party things
• Add-ons
• Stateful orchestration (e.g. MySQL)
• Domain-specific APIs (e.g. Istio)
• Higher levels of abstraction (e.g. kNative)

More recently: for in-tree, first-party things!
• Storage Snapshots (integrates w/ PersistentVolumes)
• RuntimeClass (integrates w/ Kubelet and CRI)
• CSI
• Expect more...

CRDs are no longer 2nd class

The role of CRDs in Kubernetes

 Google Cloud Platform

Now: most/all new APIs are CRDs

Eventually: Everything becomes a CRD (except
things to run CRDs)

• Built-in: Namespaces, CRDs, Admission, etc.
• CRDs: Pods, Services, Nodes, Deployments, ...
• Kubernetes is a set of operators

CRD will need to get more powerful (a good thing).
We need to simplify some APIs (also a good thing).

There should be nothing that we can
do that you can’t

Vision

 Google Cloud Platform

generic apiserver

Namespaces

CustomResourceDefinitions

ValidatingWebhookConfigurations

MutatingWebhookConfigurations

k8s.io typeset

Pods

Services

Nodes

istio.io typeset

Gateways

VirtualServices

DestinationRules

CRD

CRD

 Google Cloud Platform

Kubernetes is getting more powerful here
• CRD versioning
• Sub-resources
• Better validation

The generic apiserver should be the only apiserver

Kubernetes API machinery is a project of its own

Serving “cloud-native” APIs should be
trivial

Work in progress

