
 Google Cloud Platform

CRDs Aren’t Just For Addons
KubeCon NA, Seattle
12/2018

Tim Hockin <thockin@google.com>
Principal Software Engineer
@thockin

(c) Google LLC



 Google Cloud Platform

   NOTE: This talk is forward looking
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Started as a way to prototype new features for 
Kubernetes itself, and for users to leverage some of 
our API machinery

Why?
• Kube-style APIs are simple and powerful
• We already have an API server (and storage)

Limited: No schema, validation, defaulting

Result: a 2nd class experience

History of CRD (née TPR)



 Google Cloud Platform

As limited as it was, it was useful

People started creating really interesting 
software-robots to automate things: “operators”

Custom abstractions to control almost anything

Often used for managing stateful apps

Driven by declarative APIs, actuated 
asynchronously by controllers

Birth of the Operator pattern
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Webhook admission controllers
• Mutating (set values, e.g. defaults)
• Validating (synchronous input validation)

Schema
• OpenAPI v3 schema definition
• Declarative validation (simple)

Almost all the pieces are in place to 
make truly native-feeling APIs

Becoming more native
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Webhook admission controllers
• Mutating (set values, e.g. defaults)
• Validating (synchronous input validation)

Schema
• OpenAPI v3 schema definition
• Declarative validation (simple)

Almost all the pieces are in place to 
make truly native-feeling APIs 
WITHOUT changing Kubernetes code!

Becoming more native
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Being used for out-of-tree, third-party things
• Add-ons
• Stateful orchestration (e.g. MySQL)
• Domain-specific APIs (e.g. Istio)
• Higher levels of abstraction (e.g. kNative)

The role of CRDs in Kubernetes
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Being used for out-of-tree, third-party things
• Add-ons
• Stateful orchestration (e.g. MySQL)
• Domain-specific APIs (e.g. Istio)
• Higher levels of abstraction (e.g. kNative)

More recently: for in-tree, first-party things!
• Storage Snapshots (integrates w/ PersistentVolumes)
• RuntimeClass (integrates w/ Kubelet and CRI)
• CSI
• Expect more...

CRDs are no longer 2nd class

The role of CRDs in Kubernetes
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Now: most/all new APIs are CRDs

Eventually: Everything becomes a CRD (except 
things to run CRDs)

• Built-in: Namespaces, CRDs, Admission, etc.
• CRDs: Pods, Services, Nodes, Deployments, ...
• Kubernetes is a set of operators

CRD will need to get more powerful (a good thing).  
We need to simplify some APIs (also a good thing).

There should be nothing that we can 
do that you can’t

Vision
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generic apiserver

Namespaces

CustomResourceDefinitions

ValidatingWebhookConfigurations

MutatingWebhookConfigurations

k8s.io typeset

Pods

Services

Nodes

istio.io typeset

Gateways

VirtualServices

DestinationRules

CRD

CRD
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Kubernetes is getting more powerful here
• CRD versioning
• Sub-resources
• Better validation

The generic apiserver should be the only apiserver

Kubernetes API machinery is a project of its own

Serving “cloud-native” APIs should be 
trivial

Work in progress


