
Kubernetes at Reddit: An Origin Story
Greg Taylor – EM, Reddit Infrastructure
/u/gctaylor



What is Reddit?



Something for everyone

5th/20th Alexa Rank (US/World)

400M+ Monthly active users

140K+ Communities

12M+ Posts per month

2B+ Votes per month



Example: /r/kubernetes



Get on with it!



Welcome to early 2016



2016 - The Infrastructure Team

● Provisioned and configured all infrastructure

● Operated most of our systems

● Responded to most incidents



Mid-2016 and onward: The Great Embiggening



Determining the path forward



Service-oriented Architecture (SOA)



Growing pains: Infra team as a bottleneck

● Problem: Eng teams too dependent on Infra team
○ Service provisioning
○ Ongoing operation
○ Debugging and performance work

● Short-term “solution”: Train and deputize 
infrastructure-oriented teams
○ Allows for more self-sufficiency
○ Only possible for some teams!



One size fits all some

Not all teams want to operate the full stack for their service

Don’t make me 
infrastructure!

My toaster 
runs Docker





What do the engineering teams REALLY want?



Service ownership

A service owner is empowered and expected to:

● Develop their service from start to finish

● Deploy their service early and often

● Operate their service



Enter: InfraRedd



A service owner should be able to
develop, deploy, and operate their service.

Regardless of engineering background



Develop: Consistency in services

Regardless of language/toolset, the “shape” of 
each service should be consistent:

● RPC protocol
● Secrets fetching
● Metrics
● Tracing
● Log output format

Baseplate: https://baseplate.readthedocs.io



Develop: Service creation

Auto-generate starter material:

Service sources

● Python/Go/Node service stub
● Dockerfile
● CI configs

Helm Charts

● Friends don’t let friends write YAML!



Develop: “Local” development

Development is facilitated by Skaffold.

Major considerations:

● Accessible to those without deep 
Kubernetes experience

● As similar to production as possible
● Re-use our standard Charts + images
● Must not exhaust standard dev laptop’s 

resources



A service owner should be able to
develop, deploy, and operate their service.

Regardless of engineering background



Deploy: Tests, builds, deploys

● CI runs through Drone
a. Tests
b. Artifact builds

● Spinnaker handles our deploys
a. Standardized pipeline templates
b. Renders Helm Charts
c. Applies rendered YAML
d. Uses V2 Kubernetes provider



Deploy: Standard staging/production flow

Staging and production deploy flow:

1. Developer pushes to canonical repo

2. Tests and builds run in CI

3. One of two flows are offered:
a. CI triggers a deploy
b. Eng manually triggers a deploy



A service owner should be able to
develop, deploy, and operate their service.

Regardless of engineering background



Operate: Explicitly defined expectations

Service owners
● Learn some Kubernetes basics
● Deploy and operate own services

Infrastructure team
● Keep the Kubernetes clusters running
● Provision AWS resources, caches, DBs
● Support and advise Product Users



Operate: Paint-by-numbers

Enabling service ownership for all backgrounds:

● Take the guesswork out

● Document all the things

● You want to do X? Here’s a guide for that

● Must be supported by training!



● Service owners auth via 
OpenID Connect

● RBAC policies are group-based

● Namespace per service

● Service owners have full access to 
their namespace(s)

Operate: Service owner permissions



Operate: Guardrails

Things that prevent or minimize damage

● Resource limits and Network Policies
○ Built into Kubernetes

● Throttling and circuit breaking
○ Envoy + Istio

● Object and Image policies
○ Open Policy Agent

● Finely scoped RBAC
○ Open Policy Agent



Operate: Oh no!

Something exploded!

Service owner:

1. Paged for service incident
2. Diagnoses + resolves issue
3. Can summon Infra if needed

Infrastructure team:

1. Paged for cluster issues
2. Those never happen. Yep.



Observability by default:

● Metrics
○ Wavefront

● Alerting
○ PagerDuty

● Tracing
○ Zipkin

● Exception/error tracking
○ Sentry

● Central logging and analysis

Operate: Observe, Diagnose, Resolve



Operate: Recap

Service owners have:

● Explicitly defined responsibilities

● Enough access to own their services

● Guardrails to prevent+limit damage

● Tools needed to respond to and 
diagnose issues



What does all of this buy us?



A service owner should be is able to
develop, deploy, and operate their service.

Regardless of engineering background



Infra team: From Operators to Enablers



Kubernetes at Reddit

7 Kubernetes clusters

~30% Of our Engineering teams

~20 Production services

10-20 Deploys a day

New services on Kubernetes by default in Q1!



Closing Remarks



reddit.com/jobs



Presenter Info + Resources

● Greg Taylor - Reddit Infrastructure
● /u/gctaylor
● @gctaylor
● github.com/gtaylor

● reddit.com/r/kubernetes
● redditblog.com/topic/technology

https://www.reddit.com/user/gctaylor/
https://twitter.com/gctaylor
https://github.com/gtaylor
http://reddit.com/r/kubernetes
http://redditblog.com/topic/technology

