
Smooth Operator
Large-Scale Automated Storage
with Kubernetes

Celina Ward @shaleenaa

Matt Schallert @mattschallert

What is M3?

M3DB Scale

Writes per second

31M
Gigabits per second

50Gb

Unique Metric IDs

9B
Instances running M3DB

1000+

2016

Clusters

2

Configuration

1

2018

Clusters

40+

Configurations

10+

Sharding
Metrics are sharded at ingestion time

M3DB Features

Sharding
Metrics are sharded at ingestion time

Replication
Replicates in 3 separate failure domains

M3DB Features

Reactive
1 hour per day,

5 hours per week

Proactive
2 hours per week

Managing M3DB Lifecycle

Managing
Complexity

Performant Stateful
Primitives
Requirement #1:

Support a high-throughput, latency-sensitive workload

Ephemeral Instances?
● No durability

● Streaming terabytes of data on restart

● Dangerous reliability implications

Remote: Block Store?
● Increased latency

● We already replicate 3x

● Less portable (+ no on-prem)

Remote: Object Store?
● Deduplicate, store remotely

● Even worse latency

● Terabytes of data transfer

Data Centers &
Cloud
Requirement #2

Embrace the
Community
Requirement #3

Local Volumes
Performant Stateful Primitives

(storage disk attached to host)

Node Affinity +
StatefulSets
Data Centers and Cloud

Results

$ kubectl get pods
NAME ZONE
east1-prod-a-rep0-0 us-east1-b
east1-prod-a-rep0-1 us-east1-b
...
east1-prod-a-rep1-0 us-east1-c
east1-prod-a-rep1-1 us-east1-c
...
east1-prod-a-rep2-0 us-east1-d
east1-prod-a-rep2-1 us-east1-d
...

Reactive
0 minutes / day

0 minutes / week

Proactive
20 minutes / week

Where does our operator replace
human effort?

Lessons Learned

Broken Assumptions
● Kubernetes revealed assumptions we made

● Instance identity ≠ host

● Made M3DB more robust

kubectl apply -f m3db_operator.yaml

Advice for Large
Stateful Workloads

Out-of-Cluster Reliability
● Years invested in M3DB reliability & tooling

● Considered Kubernetes once we faced
operational scaling challenge

● Be mindful of adding complexity

Declarative > Imperative
● Core to Kubernetes, great for stateful

● Operator exchanged desired states between
Kubernetes and M3DB

● Storing topology externally → no hard
dependency on Kubernetes API

Iterate on Each Stateful
Interaction
● Don’t try to do everything at once

● Edge case scenarios still need humans

Next Steps

● Data centers…

● Auto-scale M3DB clusters

+

Thank You to the Team
Special shout out to Paul Schooss

github.com/m3db/m3db-operator

m3db.io/talks

eng.uber.com/m3

@shaleenaa @mattschallert

