
Intro: SIG-Scheduling
Da (Klaus.) Ma (@k82cn, mada3@huawei.com)



Charter of SIG Scheduling

SIG Scheduling is responsible for the components that make Pod placement 
decisions. We build Kubernetes schedulers and scheduling features for Pods. We 
design and implement features that allows users to customize placement of Pods 
on the nodes of a cluster. These features include those that improve reliability of 
workloads, more efficient use of cluster resources, and/or enforces placement 
policies. 



Overview of SIG Scheduling

Meetings

• 10AM PT Meeting: Thursdays at 17:00 UTC (biweekly starting Thursday June 7, 2018). Convert to your timezone.
• 5PM PT Meeting: Thursdays at 24:00 UTC (biweekly starting Thursday June 14, 2018). Convert to your timezone.

Leadership

• Bobby (Babak) Salamat (@bsalamat), Google
• Klaus Ma (@k82cn), Huawei

Contact

• Slack: https://kubernetes.slack.com/messages/sig-scheduling
• Mailing list: https://groups.google.com/forum/#!forum/kubernetes-sig-scheduling 
• Open Community Issues/PRs: https://github.com/kubernetes/community/labels/sig/scheduling 

https://docs.google.com/document/d/1FQx0BPlkkl1Bn0c9ocVBxYIKojpmrS1CFP5h0DI68AE/edit
http://www.thetimezoneconverter.com/?t=17:00&tz=UTC
https://docs.google.com/document/d/1FQx0BPlkkl1Bn0c9ocVBxYIKojpmrS1CFP5h0DI68AE/edit
http://www.thetimezoneconverter.com/?t=24:00&tz=UTC
https://github.com/bsalamat
https://github.com/k82cn
https://kubernetes.slack.com/messages/sig-scheduling
https://groups.google.com/forum/#!forum/kubernetes-sig-scheduling
https://github.com/kubernetes/community/labels/sig/scheduling


Sub-projects of SIG Scheduling

kube-batch poseidon

descheduler

kube-scheduler



kube-scheduler schedules one Pod at a time



Predicate functions filter out Nodes



Priority functions rank the remaining Nodes



Overview of kube-batch



Overview of kube-batch



Features of kube-batch

• Co-scheduling 

• “Fair-sharing” (job/queue) 

• Preemption/Reclaim 

• Task Priority within Job

• Predicates 

• Queue 

• Backfill (partially) 

• Dynamic configuration

Bring Batch Capability into Kubernetes (#68357)

https://github.com/kubernetes/kubernetes/issues/68357


Users of kube-batch



Poseidon

Poseidon/Firmament scheduler augments 
the current Kubernetes scheduling 
capabilities by incorporating a new novel 
flow network graph based scheduling 
capabilities alongside the default 
Kubernetes Scheduler.

Firmament models workloads on a cluster 
as flow networks and runs min-cost flow 
optimizations over these networks to make 
scheduling decisions.



Features of Poseidon

1.Node level Affinity and Anti-Affinity

2.Pod level Affinity and Anti-Affinity

3.Taints & Tolerations

4.Gang Scheduling



How those schedulers 
work together ???



Sorry, I don-t know :(



Multi-Schedulers



Multi-Schedulers



Descheduler

Scheduling in Kubernetes is the process of binding pending pods to nodes, and is performed by a component of Kubernetes 
called kube-scheduler. The scheduler's decisions, whether or where a pod can or can not be scheduled, are guided by its 
configurable policy which comprises of set of rules, called predicates and priorities. The scheduler's decisions are influenced by 
its view of a Kubernetes cluster at that point of time when a new pod appears first time for scheduling. As Kubernetes clusters 
are very dynamic and their state change over time, there may be desired to move already running pods to some other nodes for 
various reasons:

• Some nodes are under or over utilized.
• The original scheduling decision does not hold true any more, as taints or labels are added to or removed from nodes, 

pod/node affinity requirements are not satisfied any more.
• Some nodes failed and their pods moved to other nodes.
• New nodes are added to clusters.

Consequently, there might be several pods scheduled on less desired nodes in a cluster. Descheduler, based on its policy, finds 
pods that can be moved and evicts them. Please note, in current implementation, descheduler does not schedule replacement 
of evicted pods but relies on the default scheduler for that.

Trigger Of Pod Movement/Migration 

Eviction -> Creation -> Re-schedule



User Cases of Descheduler

• Some nodes are under or over utilized.
• The original scheduling decision does not hold true any more, 

as taints or labels are added to or removed from nodes, pod/
node affinity requirements are not satisfied any more.

• Some nodes failed and their pods moved to other nodes.
• New nodes are added to clusters.



Policy & Strategy

• RemoveDuplicates

• LowNodeUtilization

• RemovePodsViolatingInterPodAntiAffinity

• RemovePodsViolatingNodeAffinity



Pod Eviction Restriction

• Critical pods (with annotations scheduler.alpha.kubernetes.io/critical-pod) 
are never evicted. 

• Pods (static or mirrored pods or stand alone pods) not part of an RC, RS, 
Deployment or Jobs are never evicted because these pods won't be 
recreated. 

• Pods associated with DaemonSets are never evicted. 
• Pods with local storage are never evicted. 
• Best efforts pods are evicted before Burstable and Guaranteed pods. 
• Pod are never evicted If violates its PDB



Deep Dive: Scheduling SIG - Bobby (Babak) Salamat, 
Google 

Thursday, December 13, 2018 4:30pm - 5:05pm ; 618-620

https://kccna18.sched.com/event/GrdO/deep-dive-scheduling-sig-bobby-babak-salamat-google?iframe=yes&w=100%25&sidebar=yes&bg=no#
https://kccna18.sched.com/event/GrdO/deep-dive-scheduling-sig-bobby-babak-salamat-google?iframe=yes&w=100%25&sidebar=yes&bg=no#
https://kccna18.sched.com/venue/618-620?iframe=yes&w=100%25&sidebar=yes&bg=no


Thank You :)


