
Introduction to NATS.io

Colin Sullivan and Wally Quevedo

What is messaging?

Message Oriented Middleware

Wikipedia
“Message-oriented middleware (MOM) is software or hardware
infrastructure supporting sending and receiving messages between
distributed systems.”

Ken Klingenstein
 “Middleware is the intersection of the stuff that network engineers don't
want to do with the stuff that applications developers don't want to do.”

Why do we need messaging?

Developing and deploying applications that communicate in distributed systems
is complex and difficult. Message oriented middleware vendors provide a set of
basic features to make this easier.

These can include:

✓ Multiple messaging patterns bundled into one technology
✓ Location transparency
✓ Decoupling of data producers and consumers
✓ Built-in load balancing

Messaging systems have been very successful in providing features like these
for the last thirty years..

Messaging of Today

Messaging has been designed to meet the needs of the day:

● Originally developed for static systems
○ Software ran on servers with a long lived address and known resources
○ Configuring endpoints was onerous but infrequent
○ Static systems are predictable, allowing for resiliency with emphasis on

individual servers and clients
● Scaling required manual provisioning of hardware and software
● Deployments were smaller and systems were siloed

Most messaging products today carry this legacy.

Messaging of Tomorrow

Technology has matured - distributed systems architecture has been disrupted
through increased decomposition which has created a different set of needs:

✓ Lightweight communications for ever increasing microservices, edge platforms and
endpoint devices

✓ Resiliency with an emphasis on the health of the system as a whole
✓ Ease of use and deployment for agile development, CI/CD
✓ Easy, low touch operations
✓ Highly scalable with built-in load balancing and no config auto-scaling
✓ Identity and Security mechanisms that are consistent from edge devices to backend

services

NATS was created specifically to meet these needs for next generation cloud
native applications, edge computing platforms and devices.

What is NATS?

NATS is an eight year old, production proven, cloud-native messaging
system made for developers and operators who want to spend more time
doing their work and less time worrying about how to do messaging.

✓ DNA: Performance, simplicity, security, and availability
✓ Built from the ground up to be cloud native
✓ Multiple qualities of service
✓ Support for multiple communication patterns
✓ Over 30 client languages

History

Created by Derek Collison

Derek has been building messaging
systems and solutions > 25 yrs

Maintained by a highly experienced
messaging team

Engaged User Community

Derek Collison
Founder and CEO at Synadia

Founder and former CEO at Apcera
CTO, Chief Architect at VMware
Architected CloudFoundry
Technical Director at Google
SVP and Chief Architect at TIBCO

Contribution Statistics

● Over 1000 contributors, over 100 with more than 10 commits*
● 30+ public repos

○ 50+ releases
○ 8000+ GitHub stars across repos

● ~35M NATS server Docker Hub pulls
● ~25M NATS streaming server pulls
● 950+ Slack members
● 20+ releases of the NATS server since June 2014, ~= 5/year

* https://nats.devstats.cncf.io/d/9/developers-summary

Users and Adopters

Acadiant | Apcera | Apporeto | Baidu | Bridgevine | Capital One | Clarifai | Cloud Foundry | Comcast | Ericsson | Faber | Fission |
General Electric | Greta | HTC | Logimethods | Netlify | Pex | Pivotal | Platform9 | Rapidloop | Samsung | Sendify | Sensay |

StorageOS | Telia Company | VMware | Weaveworks | Workiva

Use Cases

● Cloud Messaging
✓ Microservices Transport
✓ Control Planes
✓ Service Discovery
✓ Event Sourcing

● IoT and Edge
● Mobile and Big Data
● High Fan-out Messaging
● Augmenting or Replacing Legacy Messaging

CNCF Integrations

● Kubernetes
○ NATS Operator

✓ Automatically creates networks services and a NATS cluster
✓ Authorization with service accounts
✓ Configuration stored as secrets
✓ Automatic reload on configuration update

○ NATS Streaming Operator
✓ Automatic clustering

● Prometheus
○ NATS Exporter

● Fluentd
● Helm

Messaging Patterns

Messaging Patterns

✓ Publish/Subscribe

✓ Load Balanced Queue Subscribers

✓ Request/Reply

Subjects

A subject is simply a string representing an interest in data.

● Simple subject: foo
● Hierarchically Tokenized: foo.bar
● Wildcard subscriptions
✓ foo.* matches foo.bar and foo.baz.
✓ foo.*.bar matches foo.a.bar and foo.b.bar.
✓ foo.> matches any of the above
✓ > matches everything in NATS

Publish/Subscribe Pattern

Publish a message to a subject and 1 to N subscribers on that subject
receive the message.
Used For:

✓ High Fanout
✓ Specialization or parallelization of work

Load Balanced Queue Pattern

Publish a message to a subject and 1 of N subscribers on that subject
receive the message - no configuration and transparent across a cluster.
Used for:

✓ Load balancing
✓ Auto-scaling
✓ Lame duck mode during upgrades

Request/Reply

Request/Reply APIs are available in most clients and are implemented
through unique subjects. NATS specific optimizations include:

✓ Request to many, only handle the
first response

✓ Respond with queue subscribers
to load balance

Using Drain Mode

Supported clients provide a drain API to allow for graceful shutdown

● Unsubscribes and stops receiving new messages
● Continue to process any buffered messages
● Replace Close() with Drain()
● Use cases:

✓ Graceful shutdown to eliminate data loss
✓ Downward auto-scaling
✓ Upgrades

Performance, Scalability, and
Resilience

Performance

18 million messages per second with one server, one data stream.
Up to 80 million messages per second per server with multiple data
streams.

Performance Decisions

Performance is a part of every decision we make...
✓ Design for scale
✓ Careful analysis of the fastpath

Just as important is what NOT to implement...
✕ Message guarantees in core NATS
✕ Transactions
✕ Message Schemas
✕ Last Will and Testament
✕ Message Groups

Lightweight and Scalable

Availability

The health and availability of the system as a whole is prioritized
over servicing any individual client or server.
✓ NATS server “selfish optimization”
✓ Full Mesh clustering of NATS servers
✓ Self Healing Server and Client connections

...creates a NATS dial-tone, always on, always available.

Resilience

Self healing clusters and
automatic reconnection

allow for resilience at scale

“Simplicity is prerequisite for
reliability” - Edsger Dijkstra

Simplicity

Simplicity

● Single binary

● 7.8 MB docker image with no external dependencies

● Text-based protocol with just a handful of verbs

● Low Configuration

✓ Clients only need a url and credentials
✓ Servers auto-discover
✓ You can share configuration files amongst servers

● Simple and Straightforward API

Auto-Discovery

● Auto-Discovery
✓ Automatically Exchange Server Topology
✓ Server ⇆ Server
✓ Server → Client

● No configuration updates
✓ Failover to auto-discovered servers

● Great for rolling upgrades

Simplicity - Go API

Simple application written in go to
publish a message.

Connect, Publish, and check for
errors.

Simplicity - Java API

Just as simple...

Delivery Modes

Delivery Modes

NATS supports two delivery modes:
● At most once (Core)

✓ No guarantee of delivery - messages can be lost - applications must
detect and handle lost messages

● At least once (Streaming)
✓ A message will always be delivered, but in certain cases may be

delivered more than once
✕ Exactly once is arguably unnecessary, always complex, and inevitably

slow.

NATS Streaming

NATS Streaming is a data streaming system atop core NATS
● At-least-once delivery
● Replay by time or sequence number
● Last/initial value caching
● Durable subscribers
● Rate matching per subscriber
● Memory, File, or Database storage
● High Availability through fault tolerant or clustered configurations
● Scale through partitioning

Global Deployments

Superclusters

Clusters of clusters to create a truly global NATS network
● Novel spline based technology
● Optimistic sends with interest graph pruning
● Transparent, intelligent support for geo-distributed queue subscribers

Accounts

● Accounts are isolated communication contexts allowing secure
multi-tenancy

● Bifurcate technology from business driven use cases
✓ Data silos are created by design, not software limitations

● Easy, Secure and Cost Effective
✓ One NATS deployment for operators to manage
✓ Decentralized - organizations can self-manage

● Share data between accounts
✓ Secure Streams and Services
✓ Only mutual agreement will permit data flow

Services and Streams

Service definitions are a secure RPC endpoint
✓ Export a service to allow other accounts to import
✓ Import a service to allow requests to be sent and securely, seamlessly,

and anonymously to another account
✓ Usage include monitoring probes, certificate generation services, secure

vault, geolocation
Stream definitions allow data flow between accounts

✓ Export a stream to allow egress
✓ Import a stream to allow ingress
✓ Use cases include stock quotes, weather, Twitter feeds, Slack, global alerts

Zero client configuration or client API changes!

Security

Security

NATS Secures distributed systems through...

✓ Authentication
✓ Encryption
✓ Policy
✓ Subject based Authorization

...update these with zero downtime.

Authentication

● TLS
✓ CA Certificate Support
✓ Client Certificate Support
✓ Certificate Subject Attribute to be used as an identity (coming soon)
✓ 1.2, 1.3 coming soon

● NKeys
✓ ED25519 keys made easy, serving as identities

● User/Password
✓ Bcrypt passwords in storage

NKeys and JWTs

A new NATS Identity authentication and authorization system.

● ED25519 based encoded keys made simple
○ Fast and resistant to side-channel attacks
○ Sign and Verify

● NATS servers never see private keys
○ Server sends nonce during connect, verifies client signatures

● JWT associate users with accounts and permission sets

Encryption

Encrypt through TLS

● Default to the most secure cipher suites
● Overrides

✓ Define list of ciphers
✓ Define elliptical curves

NATS Streaming will encrypt data at rest (Q1 2019)

Authorization

● Subject based
✓ Control who can publish to what subjects who can subscribe to what

subjects.
● Wildcard support
● Allow or Deny

✓ Provides flexibility

Monitoring

Monitoring Servers

Each server is monitored independently, returning JSON.

● Poll an endpoint for metrics
● http://demo.nats.io:8222/varz
● http://demo.nats.io:8222/connz
● http://demo.nats.io:8222/subsz
● http://demo.nats.io:8222/routez

Simplicity allows for building complex tooling and custom CLIs.

Integration with Prometheus allows aggregation and alerting on NATS
server events.

{
 "server_id": "EiRJABZmVpWQDpriVqbbtw",
 "version": "1.3.0",
 "go": "go1.11.1",
 "host": "0.0.0.0",
 …
}

http://demo.nats.io:8222/varz
http://demo.nats.io:8222/connz
http://demo.nats.io:8222/subsz
http://demo.nats.io:8222/routez

Monitoring with nats-top

https://github.com/nats-io/nats-top

Production Monitoring

Browser Prometheus
Server

NATS
Prometheus

Exporter

NATS
Server

NATS
Prometheus

Exporter

NATS
Server

Production Monitoring

https://github.com/nats-io/prometheus-nats-exporter

Upcoming Features

Upcoming in 2019

● Other Messaging Project Integrations
○ Augmenting other messaging systems with NATS

● Data at rest encryption (streaming)
● Jetstream (NATS Streaming V2)
● Native MQTT support
● Websocket Support
● Microcontroller Clients for IoT

Contributing

We welcome contributions of all kinds. Some ways to contribute
include:

✓ Highlight your NATS usage or insights on the NATS blog
✓ Fix a bug
✓ Add, fix, or clarify documentation
✓ Propose or add a feature through a Github PR
✓ Present your NATS project at meetups

Read more at https://nats.io/documentation/contributing

https://nats.io/documentation/contributing

Demo: Scaling with Queue
Subscribers

Thank you!

Questions?

