
Got the Need for Speed? Hit the Gas Pedal 
and Accelerate Your Prometheus Dashboard 
Using Trickster

Shilla Saebi @shillasaebi
James Ranson @ranson



James Ranson, Senior Principal Architect, Comcast
Trickster Creator and Maintainer
@ranson

Shilla Saebi, Open Source Program Manager, Comcast
Chief dispenser of Trickster champagne
@shillasaebi



Comcast Open Source 
Program Office

Opened in 2017

Support 
7k+ developers

141+ project repos on 
GitHub

4-person team



2012

- Launched 1st 2 OSS projects
on github.com/comcast
- Start of CDN project

2013

- OSAC (Open Source 
Advisory Counsel formed)
- Signed CCLA for OpenStack

2014

- Consortia for RDK formed 
w/TWC, Charter, & Liberty Global
- Contributed IPv6 functionality 
to OpenStack

- Traffic Control enters 
Apache Incubator
- Joined ASF 

Our Open Source Journey

- 1st Philly OS Conference
- 50M RDK DLs, 30 PB content 
through ATC daily
- Launched OSFP 
(Open Source Fellowship Pilot)
- 180 contributions this year
- Won 1st ever Cloud Foundry 
Community Champion award

2015

- Traffic Control open sourced
- Top contributors to OpenStack
- Won OpenStack SuperUser
Award

2011

- Internal creation of RDK for X1
- Contributions to Apache 
HttpComponents
- Signed CCLA with ASF

2016

2017

- OSPO created 
- Joined LF, Yocto, 
OpenChain, ONAP, CNCF
- Launched comcast.github.io
- Signed Cloud Foundry CLA

20182010

- Contributed caching module
to Apache HttpClient

2006

- OSS consumption



Trickster, developed at 
Comcast in 2018, is an 
open source project 
written in Go



Community



Trickster Metrics

• 233 commits
• 15 releases
• 2/3 of our contributors are not from Comcast
• 519 stars
• 43 forks



Deep Dive into Trickster



Trickster dramatically 
accelerates dashboard 
rendering times for any 
series queried from 
Prometheus.



• Dashboard apps repeatedly process and download the same data 
sets, with only minor differences based on relative time range at 
request time.
• Per user, per-refresh

• Most dashboard refreshes ask for ~300X more data than actually 
needed, taking significantly longer to serve than necessary.

• Trickster eliminates repetitive computations against Prometheus

Why We Created Trickster



1 1

DELTA CACHE start=55&end=56

start=44&end=44

start=44&end=56

43

45

46

47

48

49

50

51

52

53

54

45

46

47

48

49

50

51

52

53

54

55

56

55

56

Client	requests	range	44-56	from	Trickster

Trickster	determines	it	has	range	45-54

Trickster	requests	ranges	44-44	&	55-56	from	Prometheus

Trickster	merges	new	range	into	cached	range

Trickster	extracts	range	44-56	and	serves	to	Client

44 44



1 2

STEP BOUNDARY NORMALIZATION

1:00:00 1:05:00 1:10:00 1:15:00 1:20:001:00:00 1:05:00 1:10:00 1:15:00 1:20:00



1 3

FAST FORWARD (REAL-TIME DATA)

1:05:00 1:10:00 1:15:00 1:20:001:05:00 1:10:00 1:15:00 1:20:00



1 4

TRICKSTER USE CASES

• Cardinality Creep slows down dashboards over time

• Label Values may not be controlled by the Prometheus or Application Owner

• Diversity of label values like Device Type and Version grows over time

• Incidental Heavy Dashboard Usage (E.g., Outages)

• Dashboards see highest usage during outages, requiring significantly more 
resources than when the monitored system is healthy.

• Dashboards are generally least performant during their time of greatest need.

• Ongoing Heavy Dashboard Usage (e.g., multi-tenant Observability services)

• Companies provide "as a service" centralized Observability platforms having many 
users in many Orgs



Live Demo



1 6

ROADMAP

• Move to Interfacing Model to support more upstream types
• InfluxDB
• ElasticSearch
• Circonus

• Add Distributed Tracing Support
• Should support all major players (OpenTracing, OpenCensus, Zipkin)

• High Availability
• Query multiple HA Prometheus concurrently and merge datasets to fill any gaps 

https://github.com/Comcast/trickster/issues

https://github.com/Comcast/trickster/issues


1 7

SUPPORTED CACHES

• In-Memory sync.Map

• Filesystem Cache

• bbolt Cache

• Redis (deployed/operated separately from Trickster)

• Cache supports snappy compression (enabled by default)



1 8

• Trickster is fully instrumented with Prometheus /metrics http endpoint
• Separate HTTP listener from Proxy, with it’s own configurable Port #

• Metrics available about cache size, hit rates, proxy durations
• trickster_requests_total{method="query_range", "status"="hit"}

• Trickster provides /health endpoint for health check clients.

• Grafana Dashboard Template for Trickster Performance & Heath

METRICS & MONITORING



1 9

SUPPORTED DEPLOYMENTS

• Standalone Binary

• Docker Container (hub.docker.com)

• Kubernetes (Example deployment files provided in the project)

• Kube w/ Helm (Example charts provided in the project)



2 0

GET INVOLVED

• Clone, Fork and Contribute
• https://github.com/comcast/trickster

• Join #trickster on the Gophers Slack instance

• Add you name to our Users list in the Readme by submitting a PR



It's important to have 
a friendly ramp up 
process with 
documentation



It's important to provide clear and consistent support





@tricksterio



comcast.github.io





Thank you!

Shilla Saebi @shillasaebi
James Ranson @ranson


