

KubeCon | CloudNativeCon

North America 2018

Fine-grained Cost Allocation in Multi-tenant Kubernetes Clusters

Yang Guan (Google) yangguan@google.com

- Example tenant
 - Team/department within a company
 - Customer of a Saas
 - Application
- Eases cluster management
- Lowers control plane overhead
- Reduces resource fragmentation
- Allows quick provisioning for new tenant

Visibility into usage is challenging, especially in multi-tenant clusters

As a result,

- Hard to know how much of each resource is used, and by whom
- Difficult to understand and predict per-tenant usage/cost trend
- Challenging to pinpoint costs to a specific tenant

Who needs visibility into resource usage?

Finance department	SREs/ Admins	IT Director/ Product manager
Have basis for planning, budgeting and forecasting	Catch unexpected usage/bugs	Understand usage trends and drivers
Perform cost allocation	Monitor network traffic	Optimize resource utilization

CloudNativeCon

North America 2018

KubeCon

- Monitor and report resource usage in a Kubernetes cluster
 CPU, memory, GPU, storage, network traffic, etc
- Tie resource usage to Kubernetes concepts
 pods, persistentVolumeClaims, namespaces, labels, etc

Measure usage in Kubernetes

CloudNativeCon

North America 2018

KubeCon

Define "usage" as "request" for CPU/Memory North America 2018

- kube-scheduler
 - Uses request to decide whether pod fits on node
- cluster autoscaler
 - $\circ~$ Adds nodes when there are pending pods
 - Removes nodes when possible to re-pack pods
- ResourceQuota
 - Constrains the aggregated resource requests

Utilization is still useful

- Tracks resources used by BestEffort/Burstable pods
- Allows understanding application behavior
 - For example, changes in tenant usage patterns
- Accounts network usage
 - Kubernetes does not (yet) support network bandwidth as a schedulable resource

Convert usage into cost

- Dedicated resource (e.g., dynamically provisioned PDs)
 - Perform a simple lookup
- Shared resource (e.g., VM instances)
 - Allocate cost proportionally
 - Example:
 - Pod requests 200 milli-CPU and runs 60 minutes
 - Cost of a single-core VM is \$1 per hour
 - CPU cost for the pod == \$0.20

GKE Usage Metering

- Currently in Beta
- Enable/disable via gcloud
- Features
 - CPU, memory, dynamically provisioned disks, GPUs, and network egress
 - Reports usage by Kubernetes namespaces + labels

System Architecture

Demo

- Multi-tenancy has many benefits
 - Eases cluster management and lowers cost
- Per-tenant usage metering has many use cases
 - Resource usage monitoring/forecasting
 - Anomalous tenant behavior detection
 - Cost allocation
- Available in Beta on GKE
 - **Documentation**

KubeCon CloudNativeCon

3

North America 2018