
Evolution of Integration and
Microservices with Service Mesh

and Ballerina

@christianposta

Christian Posta
Chief Architect, cloud application development

 Twitter: @christianposta

Blog: http://blog.christianposta.com

Email: christian@redhat.com

Slides: http://slideshare.net/ceposta

•  Author “Microservices for Java developers”

and “Introducing Istio Service Mesh”

•  Committer/contributor lots of open-source projects
•  Blogger, speaker, mentor, leader

https://www.manning.com/books/istio-in-action

Existing investment

New capabilities need to work with
existing investment

As we move to services architectures,
we push the complexity to the space
between our services.

@christianposta

@christianposta

•  Orchestrate calls across multiple microservices
•  Calls in parallel, sequential, etc
•  Aggregate, combine, transform, split, on “messages”
•  Deal with errors, unexpected results

Application integration

@christianposta

•  Deal with atomicity / consistency issues
•  Message idempotency / message de-dupe
•  APIs / DDD anti-corruption layers / adapters
•  Tie in with existing “backend systems”
•  Deal with making calls over the network

Application integration

@christianposta

•  Service discovery
•  Load balancing
•  Timeouts
•  Retries
•  Circuit breaking
•  Rate limiting

Application networking

@christianposta

@christianposta

Application safety and correctness in a
distributed system is the responsibility of
the application teams.

@christianposta

Integration is part of the
application-development process.

Meet	Ballerina	
http://ballerina.io

•  A new language purpose-built for creating services/APIs and

integrating with existing investments/services

•  Built by WSO2

•  Static, strong typing with language constructs that make

services and service interaction first-class citizens

•  Strong focus on network awareness

Ballerina is…

@christianposta

•  Built around a “sequence-diagram” mental model

•  Round-trip development as a first-class citizen

•  Native concurrency model

•  Solves problems around application integration like:

Ballerina is…

@christianposta

•  Service call orchestration
•  Aggregating responses
•  Data security
•  Transactions, compensations

•  Quickly build APIs based on OAPI
•  Reusable protocol / backend adapters
•  Long-running execution with checkpointing
•  Stream based processing

@christianposta

So: what about application networking?

•  Service discovery
•  Retries

•  Timeouts

•  Load balancing

•  Rate limiting
•  Thread bulk

heading

•  Circuit breaking

@christianposta

Application networking

•  Edge/DMZ routing

•  Surgical, per-request

routing

•  A/B rollout

•  Traffic shaping

•  Internal releases / dark

launches

•  Request shadowing

•  Fault injection

•  adaptive, zone-aware

•  Deadlines

•  Health checking

•  Stats, metric, collection

•  Logging

•  Distributed tracing

•  Security

•  Netflix Hystrix (circuit breaking / bulk heading)

•  Netflix Zuul (edge router)

•  Netflix Ribbon (client-side service discovery / load balance)

•  Netflix Eureka (service discovery registry)

•  Brave / Zipkin (tracing)

•  Netflix spectator / atlas (metrics)

“Microservices” patterns

@christianposta

http://bit.ly/application-networking @christianposta

Screw	Java	-	I’m	using	NodeJS!	

JavaScript	is	for	rookies,	I	use	Go!	

But	python	is	so	pretty!	

I	prefer	unreadability…	Perl	for	me!	

@christianposta

In practice, operability of our services
becomes a top priority very fast

@christianposta

Let’s optimize for operability

@christianposta

Meet	Envoy	Proxy	
http://envoyproxy.io

As	a	service-instance	proxy	

@christianposta

A	service	mesh	is	a	distributed	application	infrastructure		
that	is	responsible	for	handling	network	trafHic	on	behalf		
of	the	application	in	a	transparent,	out	of	process	manner.	
	
A	service	mesh	helps	to	solve	problems	related	to		
resiliency,	security,	observability,	and	routing	control.		

@christianposta

Time	for	deHinitions:	

Service	mesh	technologies	typically	provide:	

•  Service discovery / Load balancing

•  Secure service-to-service communication

•  Traffic control / shaping / shifting

•  Policy / Intention based access control

•  Traffic metric collection

•  Service resilience

@christianposta

Open-source,	service-mesh	implementations	

•  Istio.io

http://istio.io

•  Consul Connect

http://consul.io

•  LinkerD

http://linkerd.io

@christianposta

@christianposta

Isn’t	there	overlap??	
•  Service discovery
•  Load balancing
•  Timeouts
•  Retries
•  Circuit breaking
•  Rate limiting
•  Distributed tracing
•  … some others …

Leverage	the	service	mesh	for	key,	consistent	application-	
networking	behavior.	
	
Develop	a	workHlow	for	application	teams	that	includes		
conHiguration	of	the	service	mesh	as	part	of	the	application.	
	
Opt	for	language-speciHic	implementations	when	the	general	
service	mesh	solution	doesn’t	adequately	solve	a	speciHic	
problem.	

@christianposta

Key	takeaways:	

Resist	the	urge	to	put	application-integration	logic	into	the	
service	mesh.	
	
Understand	the	“why”	of	service	mesh	and	seek	to	keep	the	
boundary	delineated	
	
	

@christianposta

Key	takeaways:	

Demo!	

http://bit.ly/istio-tutorial

Thanks!

BTW: Hand drawn diagrams made with Paper by FiftyThree.com ☺

Twitter: @christianposta

Blog: http://blog.christianposta.com

Email: christian@redhat.com

Slides: http://slideshare.net/ceposta

Follow up links:

•  http://ballerina.io
•  http://istio.io
•  http://envoyproxy.io
•  http://developers.redhat.com/blog
•  http://blog.christianposta.com/istio-workshop/slides/
•  http://blog.openshift.com
•  https://www.redhat.com/en/open-innovation-labs

