
Enhancing
Kubernetes
A Journey Through the KEP Process

Who are these two?

STEPHEN AUGUSTUS

JAICE SINGER DuMARS

Works at Red Hat as a Specialist Solution Architect on the OpenShift Tiger Team

Co-chair of SIG-Release, SIG-Azure, Sub-project lead for SIG-PM

Super power: Turning technical debt into action

Works at Google as the Cloud Native Open Source Strategy Program Manager

Co-chair of SIG-Architecture, Sub-project lead for SIG-PM, former Release Team Lead, emeritus chair of
SIG-Release, SIG-Azure, on the Kubernetes Code of Conduct Committee

Super power: surviving lightning strikes

KEP History

Caleb Miles - Technical Program Manager, Google

KEP History

A strong
foundation for a
cli and other
automation in
progress!

Why KEPs?

- Proposals were inconsistent

- Lifecycle management is
necessary

- Alleviate duplication of
effort especially in the
release process

Proposals came in many different shapes, sizes, and forms

if it works for other projects like Rust and Python...

Bringing Consistency Forward

photo: Sandip Dey

- Easier to review

- Lifecycle can be tracked in
metadata, keeping
everything in source control

- Single artifact can serve
multiple purposes

When do you need a KEP?

“If an enhancement would be
described in either written or
verbal communication to
anyone besides the KEP author
or developer then consider
creating a KEP.”

Some things may seem easy to describe, until you have to actually do it.

Anatomy of a KEP

METADATA

SUMMARY

MOTIVATION

ARTIFACTS

Metadata

Must be one of provisional, implementable, implemented,
deferred, rejected, withdrawn, or replaced.

Sections added as the KEP state changes and
moves toward implementation

KEPs Serve Many Audiences

Approver
SIGs

Release
Process

API Review
Process Roadmaps

KEP

Hey! It’s a lighthouse!

Motivation

What is the need?
- What is the problem being solved?

- Describe the significance of the problem
well enough that everyone can
understand why we should spend time
solving it and maintaining a solution

The motivation helps reviewers and participants
decide if they want to prioritize this work

Artifacts

Random boats for no reason.

GUIDES

Developer Guide

Operator Guide

Teacher Guide

GRADUATION
CRITERIA

Experience
Reports

KEP States
➔ draft:

◆ The KEP has been authored but not reviewed

➔ provisional:
◆ Proposed and actively being defined. The owning SIG has accepted that

this is work that needs to be done.

➔ implementable:
◆ The approvers have approved this KEP for implementation.

Other KEP End States
➔ deferred:

◆ The KEP is proposed but not actively being worked on.

➔ rejected:
◆ The approvers and authors have decided that this KEP is not moving

forward. The KEP is kept around as a historical document.

➔ withdrawn:
◆ The KEP has been withdrawn by the authors.

➔ replaced:
◆ The KEP has been replaced by a new KEP. The superseded-by

metadata value should point to the new KEP.

KEP Lifecycle

INIT
- Generates templates
- Creates initial metadata
- Gives a chance to see if

the cli is set up properly

KEP AUTHOR
ACTION

KEP Lifecycle

PROPOSE
- Submitter has populated

the templates
- Motivation is clear
- Preps for SIG reviewers

KEP AUTHOR
ACTION

KEP STATE:
DRAFT

KEP Lifecycle

ACCEPT
- SIG has reviewed and commits to

shepherding it towards
implementation

- Not tied to a release yet
- Not ready to have PRs associated

yet

SIG APPROVER
ACTION

KEP STATE:
PROVISIONAL

KEP Lifecycle

PLAN - KEP author(s) iterate on submitted
documentation, getting it ready to
be worked by the SIG

- May be a lengthy period as
artifacts are developed as early as
possible

- May feed into API review process
next

KEP AUTHOR
ACTION

KEP STATE:
PROVISIONAL

KEP Lifecycle

APPROVE
- KEP reviewer/approver is satisfied

that the contents of the KEP are in
alignment with the SIG, such that
coding and other activities may
proceed. It is now a trusted
document of the SIG.

- API reviews should be complete

SIG APPROVER
ACTION

KEP STATE:
IMPLEMENTABLE

Future States

Been too long since we’ve seen a
ship. I know this is about the future,

and that is an old ship, sorry.

Release Enhancements Management
RELEASE MILESTONE

 /enhancements/releases/1.16/

KEP SUMMARY

ENHANCEMENT STATES
../exceptions ../completed ../slipped

KEP DIRECTORY

ARTIFACTS

RELEASE
ENHANCEMENT

TRACKING

KEP SUMMARYKEP SUMMARYPRs:

Associated
PRs and
Issues

SIG ARCHITECTURE
KEP PROJECT BOARD

Future States

The Elusive Roadmap...

1.14 1.15 1.16 1.17
2019

KEP SUMMARY

KEP SUMMARY

KEP SUMMARY

KEP SUMMARY

The better planned the KEPs, the clearer our roadmap as a project!

AMA With Caleb Miles

Caleb:
Twitter: Don’t Have One
Slack: calebamiles
GitHub: calebamiles
email: calebmiles@google.com

DEMO

http://www.youtube.com/watch?v=_f9h1d9Hhus

All the things....

Stephen:
Twitter: @stephenaugustus
Slack: justaugustus
GitHub: justaugustus
email: stephen@agst.us

Jaice:
Twitter: @jaydumars
Slack: jdumars
GitHub: jdumars
email: jdumars@gmail.com

Questions?

One last boat.

