
Do It LiveDo It Live
Measuring Your Applications in Production

Jason Keene
Pivotal Software

Measuring your workloads as they are
running in a production environment is

invaluable for a developer

Why bother measuring in production?Why bother measuring in production?

Observe your software under load
See faults as they occur
Discover patterns of usage of your users
Debug problems:

Reproducing the problem in an artificial environment is
too difficult or time consuming
You simply do not know how to reproduce the problem

Production is RealityProduction is Reality
Ultimately

Everything else is at best a proximity

You need to be able to debug problems in production,

Understanding the character of your workloads
is critical to their successful operation.

but more importantly

The more you understand the software you are
running the more successful you will be at running it.

Debugging is not merely the act of
making bugs go away. It is the act of
understanding and gaining new
knowledge about the way the
system works.
 - Bryan Cantrill (goto; 2017)

Solve Problems

Understand our Software

&&

MethodMethod
ToolsTools
PracticePractice

MethodMethod
ToolsTools
PracticePractice

Ask Questions, Get Answers

Space ofSpace of
PossiblePossible
CausesCauses

AA BB
AA
BB
or

A A Question Question Divide theDivide the
Possibility SpacePossibility Space

AA
AA
BB
or

AnAn Answer Answer EliminatesEliminates
PossibilitiesPossibilities

Space ofSpace of
PossiblePossible
CausesCauses

Space ofSpace of
PossiblePossible
CausesCauses

Space ofSpace of
PossiblePossible
CausesCauses

It is It is CriticalCritical that you are that you are
confident in your confident in your AnswersAnswers

ti
m

e

ti
m

e

ti
m

e

ti
m

e

ti
m

e

ti
m

e

Where You Think
the Problem Is

Where It Actually Is

Just asking a Question doesn't help
if you can not get the Answer

Not having the right tools constrains the
sort of Questions you can ask

Streetlight EffectStreetlight Effect

We need Tools that can give us
Answers to our Questions

MethodMethod
ToolsTools
PracticePractice

Hierarchy of InstrumentationHierarchy of Instrumentation

We want tools that can answer arbitraryWe want tools that can answer arbitrary
questions about our softwarequestions about our software

Intercept any point of execution
Without restarting the process

Read from memory and registers
Collect data across multiple processes and the kernel

With low overhead
And do it all safely

Debuggers are AwesomeDebuggers are Awesome

Starting GDBStarting GDB

ptrace (Process Trace)ptrace (Process Trace)

Allows a tracer process to control the execution of a tracee process
intercept signals
intercept syscalls
read and write to registers/memory (including .text)
single step through the tracee

Writing to .text allows you to set breakpoints
When tracer is running the tracee's execution is typically suspended

Trap is Hit

tracee is
suspended

Kernel passes
control to the tracer

After some time tracer
calls back into the kernel

Kernel resumes
tracee

Suspended ExecutionSuspended Execution

Main Problem with ptrace:Main Problem with ptrace:

Your program is doing no work while it is suspended!

If the tracer is slow to yield back this will cripple a process.

The tracer is usually blocked on user input.

logging agent buglogging agent bug

Question:Question:
When the agent is not sending data, what
is the state of the read and write indices?

func main() {
 d := diodes.NewOneToOne(1<<12, diodes.AlertFunc(func(int) {}))

 go func() {
 for {
 write(d)
 }
 }()
 for {
 read(d)
 }
}

func write(d *diodes.OneToOne) {
 d.Set(genData)
}

func read(d *diodes.OneToOne) {
 d.TryNext()
}

func init() {
 cmd = exec.Command("dlv", "attach", os.Getenv("PID"))
 childIn, _ = cmd.StdinPipe()
 childOut, _ = cmd.StdoutPipe()
}

func main() {
 cmd.Start()

 // resume tracee
 fmt.Fprint(childIn, "continue\n")

 // read, filter and report data
 go reader(childOut)

 for {
 // sample data periodically
 }
}

time.Sleep(time.Second)
cmd.Process.Signal(os.Interrupt)

if timeToExit() {
 fmt.Fprint(childIn, exit)
 return
}

fmt.Fprint(childIn, sample)

const sample = `break main.write
continue
print d.writeIndex - d.readIndex
clearall
continue
`
const exit = `clearall
quit
no
`

This only works forThis only works for
sampling at a sampling at a low frequencylow frequency

Lots of IO to share data
between processes

Lots of overhead jumping
in and out of the kernel

Is There a Better Way?Is There a Better Way?

BPFBPF can do this! can do this!

What is BPF?What is BPF?
BPF is a custom instruction set that you can use to build programs
and inject them into the kernel.
The kernel validates the program to make sure it is safe and then
compiles it for your architecture so it runs fast.
You can then attach these programs to various events.
It was originally created for programs that do packet filtering with
little overhead, hence the name (Berkeley Packet Filter).
For example:

tcpdump src 10.5.2.3 and dst port 3389

What can your BPF program do?What can your BPF program do?
Arithmetic/Logic/Branching
Load/Store (restricted)
Call user defined bpf functions
Call various helper functions

Aggregate and store data in maps
Read stack traces for kernel and user land
Manipulate packets
Get time/rand data/current pid/task/etc
Read/write to certain places in memory
Much more!

What can your BPF program not do?What can your BPF program not do?
Your program must have a finite execution
Loops are not allowed

You can jump forward
You can jump back if it does not form loop
Bounded loops might be allowed in the future so you do not have to
manually unroll loops

Access to locks are not permitted (might be allowed in the future)
Access to arbitrary memory is not permitted

You can load/store the memory of the BPF program and access
memory in other ways

No illegal instructions
Unreachable blocks are not allowed

BPF program is compiled

BPF program is loaded,
verified, and compiled

to native code

BPF program is then
attached to event sources

BPF program is then ran
to handle events

It can then write data into memory
that is shared with the tracer

Event SourcesEvent Sources

uprobes - dynamic
usdt - static (uses uprobes)

User SpaceUser Space

kprobes - dynamic
tracepoints - static

KernelKernel

sockets
tc
perf events
etc

OtherOther

uprobes allows you to trace any
instruction in user land with much

less overhead than ptrace

USDTUSDT
Tracepoints that are defined in advance by the developer
They are typically used as tracing landmarks that are stable across time
Can report arbitrary data when they fire

Kind of like logging but without always paying the performance cost

Supported in most language runtimes (Java, Python, Node, Ruby)

This allows you to trace functions in dynamic languages by attaching
to probes such as function__entry and function__return.

Implemented in linux using uprobes

How do you write BPF programs?

BCCBCC bpfbpftracetrace
github.com/iovisor/bcc github.com/iovisor/bpftrace

BCC (BPF Compiler Collection)BCC (BPF Compiler Collection)

BCC is a compiler for BPF programs that are written in C

It also assists with interacting with your BPF programs from user land

It is implemented as a library (libbcc.so)

This library has a lot of awesome functionality and is quite mature

It comes with a collection of pre-built tools that are incredibly useful

It also comes with bindings for Python and LUA

Third party Go bindings exist

uprobe demouprobe demo

func f() {
 atomic.AddUint64(&count, 1)
}

func main() {
 for {
 f()
 }
}

bpf_text = r"""
BPF_ARRAY(count, u64, 1);

int do_trace() {
 count.increment(0);
 return 0;
};
"""

b = BPF(text=bpf_text)
b.attach_uprobe(name=sys.argv[1], sym="main.f", fn_name="do_trace")

count = b["count"]

while True:
 time.sleep(1)
 print("{:15,} ops/s".format(count[0].value))
 count.clear()

usdt demousdt demo

var (
 probes = salp.NewProvider("usdt")
 entry = salp.MustAddProbe(probes, "entry")
 exit = salp.MustAddProbe(probes, "exit")
)

func f() {
 entry.Fire()
 defer exit.Fire()
 http.Get("https://www.google.com/search?q=" + randStr())
}

func main() {
 salp.MustLoadProvider(probes)
 defer salp.UnloadAndDispose(probes)

 for {
 f()
 }
}

BPF_ARRAY(start, u64, 1);
BPF_HISTOGRAM(latency, u64);

int trace_entry() {
 u64 ts = bpf_ktime_get_ns();
 int zero = 0;
 start.update(&zero, &ts);

 return 0;
};

int trace_exit() {
 u64 *tsp;
 int zero = 0;

 // fetch timestamp and calculate delta
 tsp = start.lookup(&zero);
 if (tsp == 0 || *tsp == 0) return 0; // missed start
 u64 delta = (bpf_ktime_get_ns() - *tsp) / 1000000;

 // store as histogram
 latency.increment(bpf_log2(delta));
 start.delete(&zero);

 return 0;
};

u = USDT(pid=int(sys.argv[1]))
u.enable_probe(probe="entry", fn_name="trace_entry")
u.enable_probe(probe="exit", fn_name="trace_exit")
b = BPF(text=bpf_text, usdt_contexts=[u])

try:
 time.sleep(99999999)
except KeyboardInterrupt:
 b["latency"].print_log2_hist("milliseconds")

bpfbpftracetrace
simplifies writing these programs

uprobe:/path/to/bin:"main.f" {
 @ = count();
}

interval:s:1 {
 print(@);
 clear(@);
}

bpf_text = r"""
BPF_ARRAY(count, u64, 1);

int do_trace() {
 count.increment(0);
 return 0;
};
"""

b = BPF(text=bpf_text)
b.attach_uprobe(name=sys.argv[1],
 sym="main.f", fn_name="do_trace")

count = b["count"]

while True:
 time.sleep(1)
 print("{:15,} ops/s".format(
 count[0].value))
 count.clear()

usdt:/path/to/bin:entry {
 @start = nsecs;
}

usdt:/path/to/bin:exit {
 @ = hist(nsecs - @start);
 delete(@start);
}

bpf_text = r"""
BPF_ARRAY(start, u64, 1);
BPF_HISTOGRAM(latency, u64);

int trace_entry() {
 u64 ts = bpf_ktime_get_ns();
 int zero = 0;
 start.update(&zero, &ts);

 return 0;
};

int trace_exit() {
 u64 *tsp;
 int zero = 0;

 // fetch timestamp and calculate delta
 tsp = start.lookup(&zero);
 if (tsp == 0 || *tsp == 0) return 0; // missed start
 u64 delta = (bpf_ktime_get_ns() - *tsp) / 1000000;

 // store as histogram
 latency.increment(bpf_log2(delta));
 start.delete(&zero);

 return 0;
};
"""

u = USDT(pid=int(sys.argv[1]))
u.enable_probe(probe="entry", fn_name="trace_entry")
u.enable_probe(probe="exit", fn_name="trace_exit")
b = BPF(text=bpf_text, usdt_contexts=[u])

try:
 time.sleep(99999999)
except KeyboardInterrupt:
 b["latency"].print_log2_hist("milliseconds")

sysdig
system tap
lttng
dtrace for linux
ktap
ply

trace compass
catapult
trace-cmd
kernel shark
ftrace
ptrace

USDT
uprobes
perf events
tracepoints
PMCs
kprobes
perf

BCCBCC bpfbpftracetrace
github.com/iovisor/bcc github.com/iovisor/bpftrace

dockerdocker
cgroups

namespaces
seccomp

bpfbpftracetrace
ebpf

uprobes
kprobes

tracepoints
perf_events

✓ Intercepting at any point of execution

✓ Without restarting the process

✓ With as low overhead as possible

✓ Read from memory and registers

✓ Collect data across multiple processes and the kernel

✓ And do it all safely

MethodMethod
ToolsTools
PracticePractice

We need to Deploy a Container toWe need to Deploy a Container to
Probe our ApplicationsProbe our Applications

github.com/jasonkeene/towel

docker image
daemonset

kubectl plugin

spec:
 # share host pid namespace
 hostPID: true
 containers:
 - name: towel
 image: jasonkeene/towel
 securityContext:
 # run as root
 privileged: true
 volumeMounts:
 - name: sys
 mountPath: /sys
 - name: libmodules
 mountPath: /lib/modules
 - name: varlibdocker
 mountPath: /var/lib/docker
 - name: varrun
 mountPath: /var/run

volumes:
kernel/debug/tracing
- name: sys
 hostPath:
 path: /sys

kernel headers
- name: libmodules
 hostPath:
 path: /lib/modules

container file systems
- name: varlibdocker
 hostPath:
 path: /var/lib/docker

docker.sock
- name: varrun
 hostPath:
 path: /var/run

This runs as root!
Make sure you delete the daemonset when it is no longer needed.

Also, put the daemonset in a namespace that is restricted.

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: secret-namespace
 name: exec-towel
rules:
...
- apiGroups: [""]
 resources: ["pods/exec"]
 verbs: ["create"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: secret-namespace
 name: jane-exec-towel
subjects:
- kind: User
 name: jane
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role
 name: exec-towel
 apiGroup: rbac.authorization.k8s.io

tutorial at:
github.com/jasonkeene/towel

How to Get Started?How to Get Started?

With these tools we can

Ask Questions, Get Answers
and

Better Understand our Systems

Jason Keene
Pivotal Software

k8s slack: @jasonkeene
github.com/jasonkeene

Thank You!

