
gRPC for Node.js
Deep dive by Michael Lumish - mlumish@



What's gRPC

● RPC system working on top of HTTP2
○ Good nat traversal, stream multiplexing within single connection

● Implementations in many languages with strong backward compatibility
● Provides optional streaming calls

○ client-streaming, server-streaming, or both

● Provides authentication systems
○ oauth, jwt, custom protocols

● Provides strong protocol typing through protobuf
● Provides many rich features

○ Load balancing, retries, flow control, cancellation, deadlines, etc...



Development workflow

Write .proto files, then write client or server handlers (or stubs)

Two supported workflows:

● Compile-time protobuf code generation using protoc
● Run-time protobuf parsing using third-party protobuf.js



Demo basic client and server



Original Library: Architecture

● C Core
○ C/C++, Directly uses TCP, includes HTTP/2 implementation, interfaces with libuv event 

loop

● Native Addon
○ Transforms types and control flow between C and JS, callback-based interface

● JavaScript Surface
○ Implements public API using Native Addon API



Original Library: Precompiled Binaries

● Uses node-pre-gyp
○ Native addon distribution library, downloads and loads appropriate binary
○ Falls back to compilation using node-gyp

● Distributed on Google Cloud Storage
○ Single bucket, keyed by gRPC version

● Many different factors that affect binaries
○ Node vs Electron, operating systems, architecture

● Generated using custom scripts and internal CI infrastructure



Original Library: Issues

● Installation
○ Download failures, filesystem access failures, missing version support, fallback failure

● Loading
○ Mismatch between installing and loading the library, especially when deploying code

● Debugging
○ Native addons are opaque to Node developers trying to debug code

● Combinatorial platform and runtime support
○ 11 Node versions and 10 Electron versions, 4 CPU architectures, 3 operating systems, 2 

libc variants



Pure JavaScript Node gRPC (grpc-js)

● Actually written in TypeScript
● Uses Node's built in http2 module

○ http2 module: added in Node 9, backported to Node 8

● Currently implemented: client with basic features:
○ Unary and streaming calls
○ Cancellation, deadlines, and automatic reconnection



grpc-js Design Considerations and Priorities

● API compatibility
○ APIs in grpc-js exactly match corresponding APIs in the original library
○ Some APIs from the original library are omitted from the grpc-js API

● Prioritizing client and basic features
○ Demand for this re-implementation comes primarily from API client libraries that depend 

on gRPC

● Some advanced features omitted until we know of demand for them
○ advanced client-side load balancing, whole stream compression, others



Demo API and Protocol Compatibility



Development Plans for grpc-js

● Server
● Simple client-side load balancing
● TypeScript generation for generated code



Questions?

● https://www.grpc.io

● https://github.com/grpc/grpc-node

https://www.grpc.io
https://github.com/grpc/grpc-node

