
Deep Dive: TUF

Kubecon North America 2018

Trishank Karthik Kuppusamy, Datadog

Justin Cappos, NYU

1

Repository compromise

2

Software updates

● Experts agree: software updates
the most security practice
(USENIX SOUPS 2015)

● Updates fix security vulns
● However, important problem is

often neglected...

3

Repository compromise

● Examples:
○ Microsoft Windows Update

(2012): Flame malware
targeted Iran nuclear efforts

○ South Korea cyberattack
(2013): >$750M USD in
economic damage

○ NotPetya (2017): infected
multinational corporations

● Compromise millions of devices

4

Goal: compromise-resilience

● Only question of
when, not if

● Cannot prevent
compromise

● But must severely
limit impact

Internet

Update X

Update Y

Update Z

Repository

Phone

Laptop

Vehicle

Users

Attacker

5

The Update Framework (TUF)

6

What is on a repository?

● Repository contains packages +
metadata

7

What is on a repository?

● Repository contains packages +
metadata

● Package
○ Smallest unit of update
○ Software application or

library

Package

8

What is on a repository?

● Repository contains packages +
metadata

● Package
○ Smallest unit of update
○ Software application or

library
● Metadata

○ Cryptographic hashes, file
sizes, version numbers, etc.

○ About packages, or other
metadata files

Package

9

The Update Framework (TUF): secure software updates

● Authenticity and integrity―
even if repository compromised

● Design principles
○ Separation of duties
○ Threshold signatures
○ Explicit & implicit
○ revocation of keys
○ Minimizing risk using
○ offline keys
○ Selective delegation of trust
○ Diversity of hashing + signing algorithms

● (CCS 2010)

● https://theupdateframework.com

10

https://theupdateframework.com

Separation of duties

Design principles:
1. Separation of duties

(i.e., don’t put all your eggs in one basket).

11

The targets role

metadata packages

delegates packages to

targets

A1

BC

A.pkg

C.pkg

signs for packages

A.*

B.*, C.*

*.pkg A2

B.pkg

Role Purpose

targets Indicates metadata such as the cryptographic hashes and file sizes of packages. May
delegate this responsibility to other, custom-made roles.

12

The snapshot role

metadata packages
signs metadata for

delegates packages to

snapshot targets

A1

BC

A.pkg

C.pkg

signs for packages

A.*

B.*, C.*

*.pkg A2

B.pkg

Role Purpose

targets Indicates metadata such as the cryptographic hashes and file sizes of packages. May
delegate this responsibility to other, custom-made roles.

snapshot Indicates which packages have been released at the same time by the repository.

13

The timestamp role

timestamp

metadata packages
signs metadata for

delegates packages to

snapshot targets

A1

BC

A.pkg

C.pkg

signs for packages

A.*

B.*, C.*

*.pkg A2

B.pkg

Role Purpose

targets Indicates metadata such as the cryptographic hashes and file sizes of packages. May
delegate this responsibility to other, custom-made roles.

snapshot Indicates which packages have been released at the same time by the repository.

timestamp Indicates whether there is any new metadata or package on the repository.

14

The root role

timestamp

metadata packages
signs metadata for

signs root keys for

delegates packages toroot

snapshot targets

A1

BC

A.pkg

C.pkg

signs for packages

A.*

B.*, C.*

*.pkg A2

B.pkg

Role Purpose

targets Indicates metadata such as the cryptographic hashes and file sizes of packages. May
delegate this responsibility to other, custom-made roles.

snapshot Indicates which packages have been released at the same time by the repository.

timestamp Indicates whether there is any new metadata or package on the repository.

root Serves as the certificate authority for the repository. Distributes and revokes the
public keys used to verify the root, timestamp, snapshot, and targets role metadata.

15

Separation of duties

timestamp

metadata packages
signs metadata for

signs root keys for

delegates packages toroot

snapshot targets

A1

BC

A.pkg

C.pkg

signs for packages

A.*

B.*, C.*

*.pkg A2

B.pkg

Design principles:
1. Separation of duties

(i.e., don’t put all your eggs in one basket).

16

Threshold signatures

timestamp

metadata packages
signs metadata for

signs root keys for

delegates packages toroot

snapshot targets

A1

BC

A.pkg

C.pkg

signs for packages

A.*

B.*, C.*

*.pkg A2

B.pkg

Design principles:
1. Separation of duties.
2. Threshold signatures

(i.e., like the two-man rule to launch nuclear missiles).

¾

17

Explicit & implicit revocation of keys

timestamp

metadata packages
signs metadata for

signs root keys for

delegates packages toroot

snapshot targets

A1

BC

A.pkg

C.pkg

signs for packages

A.*

B.*, C.*

*.pkg A2

B.pkg

Design principles:
1. Separation of duties.
2. Threshold signatures.
3. Explicit and implicit revocation of keys.

18

Minimizing risk with offline keys

timestamp

metadata packages
signs metadata for

signs root keys for

delegates packages toroot

snapshot targets

A1

BC

A.pkg

C.pkg

signs for packages

A.*

B.*, C.*

*.pkg A2

B.pkg

Design principles:
1. Separation of duties.
2. Threshold signatures.
3. Explicit and implicit revocation of keys.
4. Minimized risk through use of offline keys

(i.e., don’t put keys to the kingdom under the carpet). 19

Diversity of cryptographic algorithms

● Hedge your bets
● Can’t break TUF unless you

break them all
● No need to depend on just

SHA-2 or SHA-3,
RSA or Ed25519

● Can even try post-quantum
crypto at the same time

20

How TUF Has (and Does) Evolve

21

TUF Standardization Process (TAPs)

22

● TAP 3 -- multi-role signatures over unequal quorums
● TAP 4 -- multi-repository consensus
● TAP 5 -- split repository location across URLs [draft]
● TAP 6 -- version numbers in root metadata
● TAP 7 -- TUF conformance testing [rejected]
● TAP 8 -- Key rotation / self revocation [draft]
● TAP 9 -- Mandated metadata signing scheme
● TAP 10 -- Remove native compression support

Future TAPs
● Clearer versioning support
● Wireline formats
● Partially signed threshold metadata
● Supply chain security integration

Discuss with us, then submit (TAP 1/2)

TUF Standardization Process (TAPs)

23

● TAP 3 -- multi-role signatures over unequal quorums
● TAP 4 -- multi-repository consensus
● TAP 5 -- split repository location across URLs [draft]
● TAP 6 -- version numbers in root metadata
● TAP 7 -- TUF conformance testing [rejected]
● TAP 8 -- Key rotation / self revocation [draft]
● TAP 9 -- Mandated metadata signing scheme
● TAP 10 -- Remove native compression support

Future TAPs
● Clearer versioning support
● Wireline formats
● Partially signed threshold metadata
● Supply chain security integration

Discuss with us, then submit (TAP 1/2)

TAP 8:
Key Rotation and
Self Revocation

24

TAP 8: Key rotation / self revocation

25

targets

A

B Jane

C

TAP 8: Key rotation / self revocation

26

targets

A

B Jane

C

TAP 8: Key rotation / self revocation

27

targets

A

B Jane

C

TAP 8: Key rotation / self revocation

28

targets

A

B Jane

C

TAP 8: Key rotation / self revocation

29

targets

A

B Jane

C

TAP 8: Key rotation / self revocation

30

targets

A

B Jane

C

TAP 8: Key rotation / self revocation

31

targets

A

B Jane

C

TAP 8: Key rotation / self revocation

32

targets

A

B Jane

C

X

TAP 8: Key rotation / self revocation

33

targets

A

B Jane

C

Solution: self rotation / revocation

TAP 8: Key rotation / self revocation

34

targets

A

B Jane

C

Solution: self rotation / revocation

TAP 8: Key rotation / self revocation

35

targets

A

B Jane

C

Solution: self rotation / revocation

TAP 8: Key rotation / self revocation

36

targets

A

B Jane

C

Solution: self rotation / revocation

TAP 8: Key rotation / self revocation

37

targets

A

B Jane

C

Solution: self rotation / revocation

X

TAP 8: Key rotation / self revocation

38

targets

A

B Jane

C

Solution: self rotation / revocation

XX

TAP 8: Key rotation / self revocation

● Hannes Mehnert, Justin Cappos, Marina Moore
39

Self-managing project use case
Also very cloud-native relevant
Immediately rotate / revoke

TAP 5:
Split repository

location across URLs

40

TAP 5: Split repository location across URLs

41

● Problem: How do you partially trust a repo?
○ What if you need A, but the repo contains other packages?

A.pkg B.pkg
? ?

?
C.pkg
?

?
?

TAP 5: Restricting trust to a single project (example)

● Cloud-native use case

● Can control what enterprise users see on a repository

● Example: trust only this image on Quay

42

timestamp

metadata packages
signs metadata for

signs root keys for

delegates packages toroot

snapshot targets

A1

BC

A.pkg

C.pkg

signs for packages

A.*

B.*, C.*
*.pkg A2

B.pkg

TAP 5: Trusting a mirror only for online metadata (example)

43

● Alternative Cloud-native use case

● Running Docker Hub in adversarial environments

● Potentially hostile server trusted only for timeliness and
consistency of images

timestamp

root

snapshot targets

https://untrusted/root.json

https://untrusted/timestamp.json

https://trusted/snapshot.json

https://trusted/targets.json

TAP 5: Split repository location across URLs

44

● Came out of discussions with CoreOS
○ Evan Cordell, Jake Moshenko

TAP 4:
Multi-repository

consensus

45

TAP 4: Multi-repository consensus

Repository

Test
vehicle

Military
vehicle

“...install this…”

“...install that...”

(same make and model)

Scenario: Repository controls what updates are applied

Question: Should the repository sign this info with a key
on the repo or a key kept offline?

46

TAP 4: Multi-repository consensus

Repository

Test
vehicle

Attacker

Military
vehicle

“...install this…”

“...install that...”

(same make and model)

Online key: Flexible but insecure
● Use online keys to sign all metadata
● Pro: on-demand customization

○ Easy to install different updates on vehicles of same make and model
○ Can instantly blacklist only buggy updates

● Con: no compromise-resilience
○ Attackers cannot tamper with metadata without being detected

47

TAP 4: Multi-repository consensus

Offline key: Secure but inflexible
● Use offline keys to sign all metadata
● Pro: compromise-resilient

○ Attackers cannot tamper with metadata without being detected
● Con: no on-demand customization

○ Difficult to install different updates on vehicles of same make and model
○ Cannot instantly blacklist only buggy updates

Repository

Test
vehicle

Attacker

Military
vehicle

“...install this…”

“...install that...”

(same make and model)

48

TAP 4: Multi-repository consensus

Solution: Use two repositories
OEMVehicle

offline
keys

online
keys

ECU

49

TAP 4: Multi-repository consensus

Solution: Use two repositories
● Image repository

○ Uses offline keys
○ Provides signed metadata about all available

updates for all ECUs on all vehicles

OEMVehicle

offline
keys

Image
repository

online
keys

ECU

50

TAP 4: Multi-repository consensus

Solution: Use two repositories
● Image repository

○ Uses offline keys
○ Provides signed metadata about all available

updates for all ECUs on all vehicles
● Director repository

○ Uses online keys
○ Signs metadata about which updates

should be installed on which ECUs on a
vehicle

Cloud native relevance: Nation
state attackers

OEMVehicle

offline
keys

Image
repository

online
keys

ECU
Director

repository

51

TAP 4: Multi-repository consensus

Strong involvement from automakers [Uptane]
● Work closely with vendors, OEMs, etc.
● Many top suppliers / vendors adopted Uptane in future cars!

○ ~12-35% of cars on US roads

● Automotive Grade Linux

● IEEE / ISTO standardization
○ Vibrant community
○ Dozens of institutions

Cloud Native help from CoreOS (Evan Cordell and Jake Moshenko) 52

Supply Chain
Security with

TUF and in-toto

53

Supply chain security with in-toto

● TUF only solves part of the problem

54

Supply chain security with in-toto

● TUF only solves part of the problem

55

Supply chain security with in-toto

● TUF only solves part of the problem
● in-toto validates the entire process

○ Integrates with TUF, git commit
signing, repro builds, CI/CD
tools, etc.

○ Cryptographic protection
against attack

56

Supply chain security with in-toto

● TUF only solves part of the problem
● in-toto validates the entire process

○ Integrates with TUF, git commit
signing, repro builds, CI/CD
tools, etc.

○ Cryptographic protection
against attack

57

Supply chain security with in-toto

● TUF only solves part of the problem
● in-toto validates the entire process

○ Integrates with TUF, git commit
signing, repro builds, CI/CD
tools, etc.

○ Cryptographic protection
against attack

58

Supply chain security with in-toto

59
Santiago
Torres-Arias

Justin
Cappos

Lukas
Puehringer

Hammad
Afzail

Reza
Curtmola

Why TUF + in-toto

60

TUF and in-toto in practice:

Datadog
Agent

Integrations

61

Datadog, Agent, and Agent integrations

● 3 pillars of Datadog
monitoring

○ Infrastructure metrics
○ App performance
○ Logs

● Agent
○ Collects events and metrics

● Agent integrations
○ Add-ons / plug-ins
○ > 100 and counting

62

Decoupling integrations from Agent release cycle

● Agent
○ 6-week release cycle

● Agent integrations
○ Latest versions bundled with the

Agent every 6 weeks
○ But we also want to publish new

versions independently of the
Agent

○ So customers can beta-test
immediately

63

State-of-the-art: CI/CD

64

● CI/CD
○ Continuous integration /

continuous deployment

● Pros
○ Faster deployments
○ Clean build environments
○ More secure handling of

code-signing keys

State-of-the-art: what can go wrong?

65

State-of-the-art: developer key compromise

66

State-of-the-art: VCS repository compromise

67

State-of-the-art: CI/CD system compromise

68

State-of-the-art: container image registry compromise

69

State-of-the-art: key + file server compromise

70

State-of-the-art: no compromise-resilience

71

● CI/CD
○ Continuous integration /

continuous deployment

● Pros
○ Faster deployments
○ Clean build environments
○ More secure handling of

code-signing keys

● Cons
○ No compromise-resilience

Key idea: tamper-evident CI/CD

72

●● Tamper-evident
○ x <=> source code
○ f <=> authentic CI/CD pipeline
○ y <=> package
○ Does y = f(x)?

● Compromise-resilience
○ End-users download

x, f, and y
○ If y ≠ f(x), then reject y

in-toto: software supply chain integrity

● Pipeline = series of steps
○ Every step produces signed link /

attestation: “I got this input, and
produced that output.”

● Inspection
○ Verify whether each step followed

pipeline

● Provides E2E verification of entire
supply chain

● https://in-toto.io

73

https://in-toto.io

Datadog Agent integrations software supply chain

1. tag
○ Developer outputs source code

2. wheels-builder
○ Container must receive same

source code as in “tag”
○ (Container builds wheels)
○ Container outputs wheels

3. wheels-signer
○ Container must receive same

wheels as in “wheels-builder”

74

TUF + in-toto = tamper-evident CI/CD

75

● Offline keys (administrators)

● Semi-offline keys (developers)

● Online keys (CI/CD)

TUF + in-toto = tamper-evident CI/CD

76

● Offline keys (administrators)
○ TUF root of trust

● Semi-offline keys (developers)

● Online keys (CI/CD)

TUF + in-toto = tamper-evident CI/CD

77

● Offline keys (administrators)
○ TUF root of trust
○ in-toto software supply chain

● Semi-offline keys (developers)
○ Python source code

● Online keys (CI/CD)

TUF + in-toto = tamper-evident CI/CD

78

● Offline keys (administrators)
○ TUF root of trust
○ in-toto software supply chain
○ Public keys for in-toto software

supply chain

● Semi-offline keys (developers)
○ Python source code

● Online keys (CI/CD)

TUF + in-toto = tamper-evident CI/CD

79

● Offline keys (administrators)
○ TUF root of trust
○ in-toto software supply chain
○ Public keys for in-toto software

supply chain

● Semi-offline keys (developers)
○ Python source code

● Online keys (CI/CD)
○ in-toto links
○ Packages

(universal Python wheels)

TUF + in-toto = tamper-evident CI/CD

80

● Offline keys (administrators)
○ TUF root of trust
○ in-toto software supply chain
○ Public keys for in-toto software

supply chain

● Semi-offline keys (developers)
○ Python source code

● Online keys (CI/CD)
○ in-toto links
○ Packages

(universal Python wheels)

TUF + in-toto: what can go wrong?

81

TUF + in-toto: developer key compromise

82

TUF + in-toto: VCS repository compromise

83

TUF + in-toto: CI/CD system compromise

84

TUF + in-toto: container image registry compromise

85

TUF + in-toto: key + file server compromise

86

Live demo of production

87

Takeaway: TUF + in-toto = tamper-evident CI/CD

88

●● Tamper-evident
○ x <=> source code
○ f <=> authentic CI/CD pipeline
○ y <=> package
○ Does y = f(x)?

● Compromise-resilience
○ End-users download

x, f, and y
○ If y ≠ f(x), then reject y

● Industry-first
○ Datadog Agent 6.8.0

Conclusions

89

Takeaway: TUF = compromise-resilience

90

● Only question of
when, not if

● Cannot prevent
compromise

● But must severely
limit impact

● Use TUF

Internet

Update X

Update Y

Update Z

Repository

Phone

Laptop

Vehicle

Users

Attacker

TUF: selected integrations & deployments

91

Acknowledgements

● Datadog
○ Andrew Becherer, Douglas DePerry, Agent-Integrations, Agent-Core

● NYU
○ Sebastien Awwad, Justin Cappos, Lois Anne DeLong, Vladimir Diaz, Lukas Puhringer, Santiago

Torres-Arias

● Docker
○ Nathan McCauley, Diogo Monica, David Lawrence, Justin Cormack

● CoreOS
○ Evan Cordell, Jacob Moshenko

● Uptane
○ Uptane Alliance

92

● Thanks for your time!

● TUF: https://theupdateframework.com

● in-toto: https://in-toto.io/

● Email: trishank@datadog.com [DataDog, TUF]

● Email: jcappos@nyu.edu [TUF, in-toto]

● Yubikey: https://github.com/DataDog/yubikey

Q & A

93

https://theupdateframework.com
https://in-toto.io/
mailto:trishank@datadog.com
mailto:jcappos@nyu.edu
https://github.com/DataDog/yubikey

