1

Deep Dive: TUF

Trishank Karthik Kuppusamy, Datadog
Justin Cappos, NYU ¢
Kubecon North America 2018

Software updates

Experts agree: software updates
the most security practice
(USENIX SOUPS 2015)
Updates fix security vulns
However, important problem is
often neglected...

“...no one can hack my mind”: Comparing Expert and
Non-Expert Security Practices

lulia lon Rob Reeder Sunny Consolvo

... Google Google Google
iuliaion@google.com reeder@google.com sconsolvo@google.com

é 0 What are the top 3 things you do to stay safe online?

B B Experts (N=231)

§ 40 O Non-experts (N=294)

£

Tt

=]

v

=0

s

=

g

&

Figure 1: Security measures mentioned by at least 5% of each
group. While most experts said they keep their system updated
and use two-factor authentication to stay safe online, non-
experts emphasized using antivirus software and using strong
passwords.

Repository compromise

1

e Examples:

o Microsoft Windows Update
(2012): Flame malware
targeted Iran nuclear efforts

o South Korea cyberattack
(2013): >$750M USD in
economic damage

o NotPetya (2017): infected
multinational corporations

e Compromise millions of devices

Goal: compromise-resilience

T

e Only question of Repository
when, not if Update X

e Cannot prevent /
compromise Update Y [~ Laptop

e But must severely
limit impact

—

Update Z Vehicle

-

'l

gAttacker

@

The Upﬁdate Framework (TUF)

What is on a repository?

e Repository contains packages +
metadata

What is on a repository?

Repository contains packages +
metadata
Package

o

(@]

Smallest unit of update
Software application or
library

Package

What is on a repository?

Repository contains packages +
metadata

Package
o Smallest unit of update
o Software application or
library
Metadata
o Cryptographic hashes, file
sizes, version numbers, etc.
o About packages, or other
metadata files

"signatures": [
:

"keyid": "ce3e02e72980b09ca6fSefa68197130b381921e5d0675e2e0c8f3c47e0626bba"

"method": "ed25519",
"sig": "9095bf34b0chbf9790465c0956810ch3729bc96beed8ee7e42d98997b1e8ec0ab780e57556Y
1,
"signed": {
"_type": "Targets"
"expires": "2030-01-01T00:00:00Z",
"targets": {
"/project/file3.txt": {
"hashes": {
"sha256": "141f740f53781d1ca54b8a50af22chf74e44c21a998fa2a8a05aaac2c002886b "

"length": 28

) A
"version": 1

A /

Package

The Update Framework (TUF): secure software updates

Authenticity and integrity—
even if repository compromised

Design principles
o Separation of duties Survivable Key Compromise in Software Update Systems

o Threshold signatures
o Explicit & implicit
© revocation of keys Justin Samuel” Nick Mathewson Justin Cappos
o Minimizing risk using UC Berkeley The Tor Project University of Washington

. Berkeley, California, USA nickm@alum.mit.edu Seattle, Washington, USA
© offline keys . jsamuel@berkeley.edu justinc@cs.washington.edu
o Selective delegation of trust Roger Dingledine
o Diversity of hashing + signing algorithms s Tﬁ’é;??jéﬁtu

arma i
(CCS 2010)

https://theupdateframework.com

10

https://theupdateframework.com

Separation of duties

Design principles:
1. Separation of duties
(i.e., don’t put all your eggs in one basket).

11

The targets role

metadata : packages

— = P delegates packages to

— signs for packages

’{A1 -29f A2 H Apkg

targets e, B.pkg

k' BC C.pkg

Role

Purpose

targets

Indicates metadata such as the cryptographic hashes and file sizes of packages. May
delegate this responsibility to other, custom-made roles.

12

The snapshot role

| - signs metadata for |

metadata : packages

— = P delegates packages to

— signs for packages
’_,;,[m =9l A2 H A.pkg

snapshot |~ targets B.pkg

T ‘l| C.pkg

Role Purpose

targets Indicates metadata such as the cryptographic hashes and file sizes of packages. May
delegate this responsibility to other, custom-made roles.

snapshot [Indicates which packages have been released at the same time by the repository.

13

The timestamp role

| - signs metadata for |

metadata : packages

— = P delegates packages to

— signs for packages
’_,;,[m =9l A2 H A.pkg

timestamp shapshot P targets B.pkg

T ‘l| C.pkg

—

Role Purpose

targets Indicates metadata such as the cryptographic hashes and file sizes of packages. May
delegate this responsibility to other, custom-made roles.

snapshot [Indicates which packages have been released at the same time by the repository.

timestamp | Indicates whether there is any new metadata or package on the repository.

14

The root role

- P signs metadata for
P signs root keys for

metadata : packages

I’O(;t]’ . — = P delegates packages to
. el .. — signs for packages
~N BRI *pk
: . . e _ Al = A2 A.pkg
. ~ . . ;
' .A . ~; — —ﬂ
timestamp snapshot |— » targets B.pkg
T ‘l| C.pkg
Role Purpose
targets Indicates metadata such as the cryptographic hashes and file sizes of packages. May

delegate this responsibility to other, custom-made roles.

snapshot [Indicates which packages have been released at the same time by the repository.

timestamp [Indicates whether there is any new metadata or package on the repository.

root

Serves as the certificate authority for the repository. Distributes and revokes the
public keys used to verify the root, timestamp, snapshot, and targets role metadata.

15

Separation of duties

- P signs metadata for

metadata : packages

. - P signs root keys for
roét]¢ — = P delegates packages to
L. w. R _— signs for packages
T At R A2 H Apk
i .'. \ ..'. "’-* 'pg
——— — Y,
timestamp snapshot |~ targets e,
\

/ B.pkg
T wﬁ BC C.pkg

Design principles:
1. Separation of duties
(i.e., don’t put all your eggs in one basket).

16

Threshold signatures

et - P signs metadata for
. . N~ signs root keys for metadata : packages
I’O(St]’ — = P delegates packages to
O . el ., — signs for packages
: % . \ e, . * pk
R ~ . . A1 F=% A2 A.pkg
Y A e Y
timestamp snapshot t H targets ‘\‘{*O B.pkg
" — L X

\3/2‘-” BC C.pkg

Design principles:
1. Separation of duties.
2. Threshold signatures
(i.e., like the two-man rule to launch nuclear missiles).

17

Explicit & implicit revocation of keys

e, - P signs metadata for
. . N~ signs root keys for metadata : packages
roét]’ — — P delegates packages to
N V. el . — signs for packages
s A1 F2(A2 H Apk
v .,.A \. ~.... "’ * _pg
timestamp shapshot P H targets B.pkg

T “' C.pkg

Design principles:

1. Separation of duties.

2. Threshold signatures.

3. Explicit and implicit revocation of keys.

18

Minimizing risk with offline keys

.. - - signs metadata for

. . N 2 signs root keys for

I’O(St]’ .. — = P delegates packages to

- W el —_— signs for packages
timestamp snapshot |~ H targets

metadata : packages

= ;,[A1

A2

A.pkg

Design principles:

1.

2.
3.
4

Separation of duties.

Threshold signatures.
Explicit and implicit revocation of keys.
Minimized risk through use of offline keys

B.pkg

o *[:

C.pkg

(i.e., don’t put keys to the kingdom under the carpet).

19

Diversity of cryptographic algorithms

Hedge your bets

Can’t break TUF unless you
break them all

No need to depend on just
SHA-2 or SHA-3,

RSA or Ed25519

Can even try post-quantum
crypto at the same time

20

@

How TUF Has (and Does) Evolve

TUF Standardization Process (TAPS)
T

e TAP 3 -- multi-role signatures over unequal quorums
e TAP 4 -- multi-repository consensus

e TAP 5 -- split repository location across URLs [draft]
e TAP 6 -- version numbers in root metadata

e TAP 8 -- Key rotation / self revocation [draft]

e TAP 9 -- Mandated metadata signing scheme
e TAP 10 -- Remove native compression support
Future TAPs

e Clearer versioning support

e Wireline formats

e Partially signed threshold metadata

e Supply chain security integration

Discuss with us, then submit (TAP 1/2)

22

‘ TUF Standardization Process (TAPs)
t

e TAP 3 -- multi-role signatures over unequal quorums
e TAP 4 -- multi-repository consensus

e TAP 5 -- split repository location across URLs [draft]
e TAP 6 -- version numbers in root metadata

e TAP 8 -- Key rotation / self revocation [draft]

e TAP 9 -- Mandated metadata signing scheme

e TAP 10 -- Remove native compression support

Future TAPs

e Clearer versioning support

e Wireline formats

e Partially signed threshold metadata

e Supply chain security integration
Discuss with us, then submit (TAP 1/2) 23

TAP 8:
Key Rotation and
Self Revocation

TAP 8: Key rotation / self revocation

[targets }::;[E _________ -
\”{E"/

25

TAP 8: Key rotation / self revocation

[targets }::;[E _________ -
\”{E"/

26

TAP 8: Key rotation / self revocation

Ak

[targets }::;[E _________ >
\”{E"/

27

TAP 8: Key rotation / self revocation

Ak

[targets }::;[E_ [
\”{E"/

28

TAP 8: Key rotation / self revocation

Ak

[targets }::;[E_ [
e

29

TAP 8: Key rotation / self revocation

[targets }::;[E _________ -
\”{E"/

30

TAP 8: Key rotation / self revocation

[targets }::;[E _________ -
\”{E"/

31

TAP 8: Key rotation / self revocation
T

Ak

[targets }\': ;[E _________
'

32

TAP 8: Key rotation / self revocation

[targets }::;[E _________ -
\”{E"/

Solution: self rotation / revocation

33

TAP 8: Key rotation / self revocation

[targets }::;[E _________ -
\”{E"/

Solution: self rotation / revocation

34

TAP 8: Key rotation / self revocation

S
| targets }\': E

3

Solution: self rotation / revocation

35

TAP 8: Key rotation / self revocation

S
| targets }\': E

3

Solution: self rotation / revocation

36

TAP 8: Key rotation / self revocation

S
| targets }\': E

3

Solution: self rotation / revocation

37

TAP 8: Key rotation / self revocation

| targets }::‘[E""X?’[Xe > g

= -,y

Solution: self rotation / revocation

38

TAP 8: Key rotation / self revocation

Self-managing project use case
Also very cloud-native relevant
Immediately rotate / revoke

e
" : T
») Y R
-y L
. -
y N ’
e w :

e Hannes Mehnert, Justin Cappos, Marina Moore

39

TAP 5:
Split repository
location across URLs

TAP 5: Split repository location across URLs
T

e Problem: How do you partially trust a repo?
o What if you need A, but the repo contains other packages?

A.pkg B.pkg é.pkg ?

41

TAP 5: Restricting trust to a single project (example)

e Cloud-native use case
e Can control what enterprise users see on a repository

e Example: trust only this image on Quay

- P signs metadata for
P signs root keys for

metadata : packages

I’O(St]’ . — = P delegates packages to
- A el .. — signs for packages
V. <
- - . \ LS ..
' .A .* o 'A
timestamp shapshot - B.pkg
e ES C.pkg

42

TAP 5: Trusting a mirror only for online metadata (example)

1
e Alternative Cloud-native use case
e Running Docker Hub in adversarial environments
e Potentially hostile server trusted only for timeliness and
consistency of images
https://untrusted/root.json root ﬁ ..
T ~.
. ~ ...
4 ~ S .
https://untrusted/timestamp.json timestamp snapshot targets https://trusted/targets.json

https://trusted/snapshot.json

43

TAP 5: Split repository location across URLs

e (Came out of discussions with CoreOS
o Evan Cordell, Jake Moshenko

44

@

TAP 4:
Multi-repository”
~_consensus

TAP 4: Multi-repository consensus

Scenario: Repository controls what updates are applied

Question: Should the repository sign this info with a key
on the repo or a key kept offline?

Test

“...install this...” vehicle

Repository (same make and model)

Military
vehicle

“...install that...”

46

TAP 4: Multi-repository consensus

Online key: Flexible but insecure

e Use online keys to sign all metadata

e Pro: on-demand customization
o Easy to install different updates on vehicles of same make and model

o Can instantly blacklist only buggy updates

e Con: no compromise-resilience
o Attackers cannot tamper with metadata without being detected

Test
vehicle

“...install this...”

(same make and model)

“_.install that...” Military

vehicle
\ttacker

y Repository

47

TAP 4: Multi-repository consensus

Offline key: Secure but inflexible

e Use offline keys to sign all metadata
e Pro: compromise-resilient

o Attackers cannot tamper with metadata without being detected
e Con: no on-demand customization

o Difficult to install different updates on vehicles of same make and model
o Cannot instantly blacklist only buggy updates

Test
vehicle

(same make and model)

“ .install that..”” Military
vehicle
\ttacker

“...install this...”

Repository

48

TAP 4: Multi-repository consensus

T

Solution: Use two repositories

Vehicle

ECU

offline
keys

49

TAP 4: Multi-repository consensus

Solution: Use two repositories

® |mage repository Vehicle
o Uses offline keys
o Provides signed metadata about all available
updates for all ECUs on all vehicles

Image

/ repository Emﬂ

offline
keys

50

TAP 4: Multi-repository consensus

Solution: Use two repositories

® Image repository
o Uses offline keys
o Provides signed metadata about all available
updates for all ECUs on all vehicles
e Director repository
o Uses online keys ECU
o Signs metadata about which updates
should be installed on which ECUs on a

vehicle

. . offline
Cloud native relevance: Nation 1] -

state attackers

Vehicle

Image
repository

51

TAP 4: Multi-repository consensus

Strong involvement from automakers [Uptane]
e Work closely with vendors, OEMs, etc.
e Many top suppliers / vendors adopted Uptane in future cars!
o ~12-35% of cars on US roads

AUTOMLITIVE
GRADELINUX
e Automotive Grade Linux
e |EEE /ISTO standardization :EIC‘HIN;:vyear's most important innovations in
o Vibrant community SCCUTY
o Dozens of institutions

This article is a segment of 2017's Best of What's New list. For the complete tabulation of
the year's most transformative products and discoveries, head right this way.

Cloud Native help from CoreOS (Evan Cordell and Jake Moshenko) 55

Supply Chain
Security with ~
TUF and in-toto

Supply chain security with in-toto

T

e TUF only solves part of the problem

54

Supply chain security with in-toto
T

e TUF only solves part of the problem

Supply chain security with in-toto

1

e TUF only solves part of the problem
e in-toto validates the entire process
o Integrates with TUF, git commit
signing, repro builds, CI/CD
tools, etc. a
o Cryptographic protection
against attack

56

Supply chain security with in-toto

1

e TUF only solves part of the problem
e in-toto validates the entire process
o Integrates with TUF, git commit
signing, repro builds, CI/CD
tools, etc. a
o Cryptographic protection
against attack

® .
o %o Reproducible

4.¢ Builds

Supply chain security with in-toto

1

e TUF only solves part of the proble
e in-toto validates the entire proce
o Integrates with TUF, git c

tools, etc.
o Cryptographic pr
against attack

¢*2_ Reproducible
%, ¢* Builds

Supply chain security with in-toto

controlplane

kubernetes

debian

-

‘

Santiago Hammad Lukas Reza Justin
Torres-Arias Afzail Puehringer Curtmola Cappos 59

Why TUF + in-toto

60

Datadog, Agent, and Agent integrations

DATADOG

3 pillars of Datadog

monitoring

o Infrastructure metrics

o App performance

o Logs
Agent

o Collects events and metrics
Agent integrations

o Add-ons/ plug-ins

o >100 and counting

JSTOMERS % ABOUT BLOG LOGIN
.
Integrations

More than 200 built-in integrations. See across all your systems, apps, and services.

All APl AWS AZURE CACHING CHAOS ENGINEERING CLOUD COLLABORATION

CONFIGURATION & DEPLOYMENT COST MANAGEMENT = DATA STORE DIRECT CONNECT
EXCEPTIONS GOOGLE CLOUD HEALTH ISSUETRACKING LANGUAGES LOG COLLECTION MESSAGING
MONITORING = NETWORK NOTIFICATION ORCHESTRATION OS&SYSTEM PROCESSING PROVISIONING

SEARCH SECURITY SOURCE CONTROL WEB

Q | Search foran integration..

B o &

AL CONSUL

&

& cri-o

0
2

Container Engine kubernetes

[
Q

g
0@
‘

&rdocker T oawsrere £3etCd

62

2 ‘ Decoupling integrations from Agent release cycle

DATADOG

e Agent
o 6-week release cycle

e Agent integrations

o Latest versions bundled with the
Agent every 6 weeks

o But we also want to publish new
versions independently of the
Agent

o So customers can beta-test
immediately

63

: State-of-the-art: CI/CD

DATADOG

e CIl/ICD

o Continuous integration /
continuous deployment

e Pros
o Faster deployments
o Clean build environments
o More secure handling of
code-signing keys

¥ signs metadata for

W= signs root keys for

— 5igns these targets

’.:7

targets

metadata

targets

64

: State-of-the-art: what can go wrong?

DATADOG

Fig1 Legend

DATADOG INFRASTRUCTURE
(PRIVATE CLOUD)) USERS (PUBLIC)

DEVELOPER
(PRIVATE)
GITLAB DOWNLOADER
GITHUB (PUBLIC)
v
BUILDER
INTEGRATIONS
> CORE (CONTA.INER)
A,
N
............ b -
% 1
v v
PYTHON
ANS KMS REPOSITORY (S3)

65

: State-of-the-art: developer key compromise

DATADOG
Fig 1 Legend

system Key Push Signed
Compromise Fetching Metadata

Developer DATADOG INFRASTRUCTURE
(PRIVATECLOUD) [) USERS (PUBLIC)

@
DEVELOPER
(PRIVATE)
GITHUB (PUBLIC)
v
BUILDER
_’ INTEGRATIONS (CONTAINER)
CORE
i
T
............ g
49 1
v v
PYTHON
IRINEC KIS REPOSITORY (S3)

66

: State-of-the-art: VCS repository compromise

DATADOG

Fig1 Legend

DATADOG INFRASTRUCTURE
77 (PRIVATE CLOUD) USERS (PUBLIC)

DEVELOPER
(PRIVATE)
GITHUB (PUBLIC)
v
BUILDER
INTEGRATIONS
.’ (CONTAINER)
CORE =
4 7
: sesesssnans ot e s -
H - 1
Github = -
ithu)
5 PYTHON
R it
ANS KNS REPOSITORY (S3)

67

: State-of-the-art: CI/CD system compromise

DATADOG
Fig 1 Legend
system Key push Signed
Compromis etching d
Y toroeosk e R
DATADOG INFRASTRUCTURE
7 (PRIVATE CLOUD)) LISERS (PLIBLIC)
DEVELOPER
(PRIVATE)

ci/co
GITLAB DOWNLOADER

GITHUB (PUBLIC)

v
BUILDER
INTEGRATIONS (CONTAINER)
=

CORE 7%
A
2

............ e e oy

44 1

v b 4
PYTHON
WS S REPOSITORY (S3)

68

: State-of-the-art: container image registry compromise

DATADOG

Fig1 Legend

DATADOG INFRASTRUCTURE
(PRIVATE CLOUD)) USERS (PUBLIC)

Container
Image Registry GITLAB
Compromise

DEVELOPER
(PRIVATE)

GITHUB (PUBLIC)

BUILDER
L) INTEGRATIONS | |||~~~ 77777 (CONTAINER)
CORE

A |
7!

............ e gy

b4 1

v v
PYTHON

AWS KMS

REPOSITORY (S3)

69

: State-of-the-art: key + file server compromise

DATADOG

Fig 1 Legend

DATADOG INFRASTRUCTURE
77 (PRIVATE CLOUD)) USERS (PUBLIC)

DEVELOPER
(PRIVATE)
Key File Server
GITHUB (PUBLIC) Compromise Compromise
BUILDER :
INTEGRATIONS ”
L) : (CONTAINER)
CORE
i
o
............ [
4 < 1 4
§ % N
PYTHON
r. WS S REPOSITORY (S3)

70

DATADOG

e CI/CD

o Continuous integration /
continuous deployment

e Pros
o Faster deployments
o Clean build environments
o More secure handling of
code-signing keys
e Cons
o No compromise-resilience

: State-of-the-art: no compromise-resilience

signs metadata for

~ signs root keys for

— 5igns these targets

|

targets

metadata

targets

71

> Key idea: tamper-evident CI/CD

DATADOG

e Tamper-evident
o X <=>source code Source code

(Developer)

f <=> authentic CI/CD pipeline (gﬁgffei)
y <=> package -

Does y = f(x)?

O O O

e Compromise-resilience

= . ~ |Gom
o End-users download . g g

x, f,and y & Qg

o Ify#f(x), then reject y Attacker Inspector

72

in-toto: software supply chain integrity

DATADOG

Pipeline = series of steps
o Every step produces signed link /
attestation: “I got this input, and
produced that output.”

Inspection
o Verify whether each step followed
pipeline

Provides E2E verification of entire
supply chain

https://in-toto.io

Software Supply Chain
Definition
(Layout signed by Alice)

Evidence
(Step links are signed
by Diana and Bob)

Steps

(executed by functionaries)

write

Inspection
(executed by user)

package

untar

untar.link

73

https://in-toto.io

: Datadog Agent integrations software supply chain

DATADOG

1. tag
o Developer outputs source code

2. wheels-builder

Users

. . Developers CIl/ICD .
o Container must receive same | | (HESaew)
in “taqa” i heels- heels- 5 .
source.code as in tag i e Vs iwsie a urelh
o (Container builds wheels) [A——
o Container outputs wheels . ’ wheels- wheels- | .
P o . builderdink | | signerfink | i | gl
e L Sl ooy e I foevy vy M B oot v N B

i none-any.whl:0xB ! i i none-anywhl:OxB i

3. wheels_signer Hromed Bl e S] E o i revveienne | MONG-ANY.WhE: OXB e B it ol ottt
o Container must receive same 5 '
wheels as in “wheels-builder” —EI

74

) TUF + in-toto = tamper-evident CI/CD

DATADOG

e Offline keys (administrators)

e Semi-offline keys (developers)

e Online keys (CI/CD)

75

) TUF + in-toto = tamper-evident CI/CD

DATADOG

e Offline keys (administrators)
o TUF root of trust - - -

e Semi-offline keys (developers)

e Online keys (CI/CD)

76

) TUF + in-toto = tamper-evident CI/CD

e Offline keys (administrators)

o TUF root of trust - - -

o in-toto software supply chain e =

DATADOG

e Semi-offline keys (developers)
o Python source code

e Online keys (CI/CD)

77

) TUF + in-toto = tamper-evident CI/CD

DATADOG

e Offline keys (administrators) -/
o TUF root of trust |
; I

in-toto software supply chain - o
o Public keys for in-toto software
supply chain

e Semi-offline keys (developers)
o Python source code

e Online keys (CI/CD)

78

TUF + in-toto = tamper-evident CI/CD
DATADOG

e Offline keys (administrators)
o TUF root of trust
o in-toto software supply chain
o Public keys for in-toto software
supply chain

e Semi-offline keys (developers)
o Python source code

e Online keys (CI/CD)
o in-toto links
o Packages
(universal Python wheels)

79

TUF + in-toto = tamper-evident CI/CD
DATADOG

e Offline keys (administrators)
o TUF root of trust
o in-toto software supply chain
o Public keys for in-toto software
supply chain

e Semi-offline keys (developers)
o Python source code

e Online keys (CI/CD)
o in-toto links
o Packages
(universal Python wheels)

80

TUF + in-toto: what can go wrong?
DATADOG

Fig 2

Legend

system Key Push Signed
Compromise Fetching Metadata

DATADOG INFRASTRUCTURE

(PRIVATE CLOUD)) USERS (PUBLIC)

DEVELOPER
(PRIVATE) VUBIKEY

GITLAB

DOWNLOADER

ooo
VERIFY

GITHUB (PUBLIC)

DOCKER BulLDER | 2°°

CONTENT SIGN
TRUST (CONTAINER) i
)| INTEGRATIONS
CORE]
A,
T 4 77777747 Z
1
v v

PYTHON
REPOSITORY (S3)

AWS KMS

81

: TUF + in-toto: developer key compromise

DATADOG
Fig 2

Developer DATADOG INFRASTRUCTURE
(PRIVATECLOUD) [) USERS (PUBLIC)
&
DEVELOPER
(PRIVATE)] v
GITLAB DOWNLOADER

GITHUB (PUBLIC) VERIFY

DOCKER BUILDER

CONTENT (CONTAINER) SIGN

INTEGRATIONS
-

CORE -
A: AGENT
............ e e g
1
h 4 v
PYTHON

AWS KMS

REPOSITORY (S3)

82

: TUF + in-toto: VCS repository compromise

DATADOG

Fig 2 Legend

system Key Push Signed
Compromise Fetching Metadata

DATADOG INFRASTRUCTURE
(PRIVATE CLOUD) Z) USERS (PUBLIC)

DEVELOPER
YUBIKEY
rare |

DOWNLOADER

GITLAB

VERIFY

GITHUB (PUBLIC)

CD(?I‘?TKEENRT BUILDER - nsTGN
CONTAINER
)| INTEGRATIONS TRUST | ()
CORE +
* o AGENT

v h 4

Github
5 PYTHON
R it
COﬁ;ft;gge AN KHS REPOSITORY (S3)

83

: TUF + in-toto: CI/CD system compromise

DATADOG

Fig 2 Legend

system Key Push Signed
Compromise Fetching Metadata

DATADOG INFRASTRUCTURE
(PRIVATE CLOUD) USERS (PUBLIC)

ci/co
GITLAB 7
b 4

DEVELOPER

DOWNLOADER

VERIFY

GITHUB (PUBLIC)

DOCKER | BUILDER il
NTENT SIGN
TRUST (CONTAINER) -
)| INTEGRATIONS
CORE ry
J
........... o i
2 1
b 4 v
PYTHON
AIG KNS REPOSITORY (S3)

84

: TUF + in-toto: container image registry compromise

DATADOG
Fig 2 Legend

system Key Push Signed
Compromise Fetching Metadata

DATADOG INFRASTRUCTURE
(PRIVATE CLOUD)) USERS (PUBLIC)

DEVELOPER
(PRIVATE) VUBIKEY]

Container

Image Registry GITLAB
Compromlse

DOWNLOADER

VERIFY

GITHUB (PUBLIC)

CD(;)’%'EENRT BUILDER |-°°
7/ SIGN
TRUST (CONTAINER) [pupy
)| INTEGRATIONS
CORE T
/ AGENT
............ i 'y
1
b 4 v
PYTHON

AWS KMS

REPOSITORY (S3)

85

DATADOG
Fig 2

: TUF + in-toto: key + file server compromise

DATADOG INFRASTRUCTURE

DEVELOPER

GITHUB (PUBLIC)

INTEGRATIONS
i CORE

Legend

system Key Push Signed
Compromise Fetching Metadata

(PRIVATE CLOUD))
Key File Server
Compromise GITLAB Compromise
| ot | Bunoer o 1
g TRUST (CONTAINER) §
7 A, Z
e 7, %%
/ AL 747 &
; : d ¢
v b, S
PYTHON
| ANGKMS REPOSITORY (S3)

DOWNLOADER

VERIFY

AGENT

86

) Live demo of production

DATADOG

87

2 Takeaway: TUF + in-toto = tamper-evident CI/CD

DATADOG

e Tamper-evident

o X <=>source code

o f<=> authentic CI/CD pipeline
o y<=>package

o Doesy=1f(x)?

e Compromise-resilience

o End-users download
x, f,and y
o Ify#f(x), then reject y

e Industry-first
o Datadog Agent 6.8.0

Source code
(Developer)

Package
(End-user)

e
ot
/g &

Attacker Inspector

88

Takeaway: TUF = compromise-resilience

Only question of Repository
when, not if Update X

Cannot prevent /
compromise Update Y [~ Laptop

But must severely
limit impact i
Use TUF P

UAttacker

—

Update Z Vehicle

90

TUF: selected integrations & deployments
t

\ EEEE
A
AUTOMATIVE
GRADE LINUX

o ¥

DigitalOcean DATADOG

=" Microsoft

— Y

CLOUDFLARE'

Advanced
Telematic

SYSTEMS

Uptane

91

Acknowledgements

Datadog
o Andrew Becherer, Douglas DePerry, Agent-Integrations, Agent-Core

NYU
o Sebastien Awwad, Justin Cappos, Lois Anne DelLong, Vladimir Diaz, Lukas Puhringer, Santiago
Torres-Arias

Docker
o Nathan McCauley, Diogo Monica, David Lawrence, Justin Cormack

CoreOS
o Evan Cordell, Jacob Moshenko

Uptane
o Uptane Alliance

92

Q&A

Thanks for your time!

TUF: https://theupdateframework.com

in-toto: https://in-toto.io/

Email: trishank@datadog.com [DataDog, TUF]

Email: jcappos@nyu.edu [TUF, in-toto]

Yubikey: https://qithub.com/DataDog/yubikey

1

TUF

0 EANYU|
L

TANDON SCHOOL
OF ENGINEERING

93

https://theupdateframework.com
https://in-toto.io/
mailto:trishank@datadog.com
mailto:jcappos@nyu.edu
https://github.com/DataDog/yubikey

