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● Project
● New Features
● Roadmap
● Q & A

Agenda
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● Pavol Loffay, Red Hat
○ https://github.com/pavolloffay

● Joe Farro, Uber Technologies
○ https://github.com/tiffon

 

● Yuri Shkuro, Uber Technologies
○ https://github.com/yurishkuro

About
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https://github.com/pavolloffay
https://github.com/tiffon
https://github.com/yurishkuro


• Inspired by Google’s Dapper and OpenZipkin

• Started at Uber in August 2015

• Open sourced in April 2017

• Joined CNCF in Sep 2017 (incubating)

• Applying for graduation

https://github.com/cncf/toc/pull/171 

Jaeger - /ˈyāɡər/, noun: hunter
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https://github.com/cncf/toc/pull/171


Jaeger, a Distributed Tracing Platform
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trace collection 
backend

https://jaegertracing.io 

visualization 
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instrumentation 
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data mining 
platform

https://jaegertracing.io


Technology Stack

● Go backend
● Pluggable storage

○ Cassandra, Elasticsearch, memory, ...
● React/Javascript frontend
● OpenTracing Instrumentation libraries
● Integration with Kafka, Apache Flink
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Apache Cassandra® is a trademark of the Apache Software Foundation in the United States and/or other countries.

http://www.apache.org/


Project & Community
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● 7 maintainers, from Uber and Red Hat

● GitHub stats

○ >6,600 stars, >880 forks

○ >580 contributors

■ >220 authors of commits and pull requests

■ >350 issue creators



Jaeger 1.8 - 1.9
New Features
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New Features

● New website, distributions

● Graph visualizations, trace diffs

● Integrations with other projects

● Async ingestion

● Protobuf & gRPC

● Better Zipkin compatibility
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New Website (easy to contribute)
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Example: Client Features matrix (link)
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(link)

https://www.jaegertracing.io/docs/1.8/client-features/
https://www.jaegertracing.io/docs/1.8/client-features/


Distribution: Docker images
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Binaries (Linux, MacOS, Windows)
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Graph Visualizations
Trade Diffs and Trace Graph
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Graph Visualizations
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Gantt chart is not great for traces with 10s of thousands of spans

● Trace Diffs

○ Compare two traces

○ Compare one trace against a group of traces (coming soon)

● Trace Graph (coming soon)

○ Call graph visualization with mini-aggregations

○ Showing paths rather than individual RPCs



Comparing trace structures – Unified diff



Comparing trace structures – Shared structure



Comparing trace structures – Absent in one or the traces



Comparing trace structures – More or less within a node



Comparing trace structures – Substantial divergence



"You have an outstanding balance…"



Structural vs. Time



Structural vs. Time – Very similar structures



Structural vs. Time – 2.74 seconds



Structural vs. Time – 50% increase in duration



Structural vs. Time – Are these new spans to blame?



Structural vs. Time – Or is the lag increased throughout?



Comparing span durations – Coming soon



Comparing span durations – Similar durations



Comparing span durations – Nodes that aren't shared



Comparing span durations – Follow the slower nodes



Comparing span durations – Coming soon...



Comparing span durations – Coming soon...



Graph Visualizations
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● Surface less information 

● Condense the structural representation

● Emphasize the differences

● Distinct comparison modes simplify the comparisons



Integrations

35



Integrations

● Jaeger Operator for Kubernetes
○ https://github.com/jaegertracing/jaeger-operator 

● OpenCensus libraries and agent ship with exporters for Jaeger
○ https://opencensus.io/guides/exporters/supported-exporters/java/jaeger/ 

● Istio comes with Jaeger included
○ https://istio.io/docs/tasks/telemetry/distributed-tracing/ 

● Envoy works with Jaeger native C++ client
○ https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/jaeger_native_tracing 

● Eclipse Trace Compass incubator supports importing Jaeger traces
○ https://github.com/tuxology/tracevizlab/tree/master/labs/303-jaeger-opentracing-traces 
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https://github.com/jaegertracing/jaeger-operator
https://opencensus.io/guides/exporters/supported-exporters/java/jaeger/
https://istio.io/docs/tasks/telemetry/distributed-tracing/
https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/jaeger_native_tracing
https://github.com/tuxology/tracevizlab/tree/master/labs/303-jaeger-opentracing-traces


Asynchronous Ingestion
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Architecture 2017: Push
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Asynchronous span ingestion
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● Push model was struggling to keep up with traffic spikes

○ Because of sync storage writes

○ Collectors had to drop data randomly

● Kafka is much more elastic for writes

○ Just raw bytes, no schema, no indexing

○ A lot less overhead on the write path

● Data in Kafka allows for streaming data mining & aggregations

● Two new components: jaeger-ingester and jaeger-indexer



Architecture now: Push+Async+Streaming
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Protobuf & gRPC
Enabling roadmap
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Protobuf & gRPC
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● Internal data model generated from Protobuf IDL

● gRPC connection between jaeger-agent and jaeger-collector

Why

● gRPC plays better with modern routing than TChannel

● Path to official data model and collector/query APIs

● Protobuf-based JSON API

● Unblock development of storage plugins

● (Thrift still supported for backwards compatibility)



Zipkin Compatibility
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Zipkin Compatibility

● Clients

○ Zipkin B3-*** headers for context propagation

○ Interop between Jaeger-instrumented and Zipkin-instrumented apps 

● Collector

○ Zipkin Thrift and JSON v2 span format

○ Use Zipkin instrumentation (e.g. Brave) to send traces to Jaeger

● Outstanding

○ Accept Zipkin spans from Kafka stream
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Roadmap
http://bit.do/jaeger-roadmap
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http://bit.do/jaeger-roadmap


Adaptive Sampling

Problem

● APIs have endpoints with different QPS

● Service owners do not know the full impact of sampling probability

Adaptive Sampling is per service + endpoint,

decided by Jaeger backend based on traffic
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● Jaeger clients support per service/endpoint 

sampling strategies

● Can be statically configured in collector

● Pull requests for dynamic recalculations

Adaptive Sampling Status
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● Based on Kafka and Apache Flink

● Support aggregations and data mining

● Examples:
○ Pairwise dependencies diagram

○ Path-based dependencies diagram

○ Latency histograms

Data Pipeline
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● Based on gRPC/Protobuf work
● PRs in progress for proof of concept
● Community support for different storage 

backends

Storage plugins
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● Add ability to store/retrieve partial spans

● Use case:
○ Certain workflows are hours long. Unfortunately 

spans are only emitted once after it’s Finished(). 

“Root span” is missing until the complete workflow 

is finished.

Partial Spans (community driven)
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Learn More
Website: jaegertracing.io/
Blog: medium.com/jaegertracing 
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https://jaegertracing.io/
https://medium.com/jaegertracing


Getting in Touch

• GitHub: https://github.com/jaegertracing

• Chat: https://gitter.im/jaegertracing/

• Mailing List - jaeger-tracing@googlegroups.com

• Blog: https://medium.com/jaegertracing

• Twitter: https://twitter.com/JaegerTracing

• Bi-Weekly Community Meetings
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https://github.com/jaegertracing
https://gitter.im/jaegertracing/Lobby
https://groups.google.com/forum/#!forum/jaeger-tracing
https://medium.com/jaegertracing
https://twitter.com/JaegerTracing
https://docs.google.com/document/d/1ZuBAwTJvQN7xkWVvEFXj5WU9_JmS5TPiNbxCJSvPqX0/edit


Q & A
Open Discussion
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