
Jaeger
Project Deep Dive

Pavol Loffay (Red Hat), Joe Farro (Uber),
Yuri Shkuro (Uber)

CloudNativeCon NA, Seattle, Dec-13-2018

1

● Project
● New Features
● Roadmap
● Q & A

Agenda

2

● Pavol Loffay, Red Hat
○ https://github.com/pavolloffay

● Joe Farro, Uber Technologies
○ https://github.com/tiffon

● Yuri Shkuro, Uber Technologies
○ https://github.com/yurishkuro

About

3

https://github.com/pavolloffay
https://github.com/tiffon
https://github.com/yurishkuro

• Inspired by Google’s Dapper and OpenZipkin

• Started at Uber in August 2015

• Open sourced in April 2017

• Joined CNCF in Sep 2017 (incubating)

• Applying for graduation

https://github.com/cncf/toc/pull/171

Jaeger - /ˈyāɡər/, noun: hunter

4

https://github.com/cncf/toc/pull/171

Jaeger, a Distributed Tracing Platform

5

trace collection
backend

https://jaegertracing.io

visualization
frontend

instrumentation
libraries

data mining
platform

https://jaegertracing.io

Technology Stack

● Go backend
● Pluggable storage

○ Cassandra, Elasticsearch, memory, ...
● React/Javascript frontend
● OpenTracing Instrumentation libraries
● Integration with Kafka, Apache Flink

6

Apache Cassandra® is a trademark of the Apache Software Foundation in the United States and/or other countries.

http://www.apache.org/

Project & Community

7

● 7 maintainers, from Uber and Red Hat

● GitHub stats

○ >6,600 stars, >880 forks

○ >580 contributors

■ >220 authors of commits and pull requests

■ >350 issue creators

Jaeger 1.8 - 1.9
New Features

8

New Features

● New website, distributions

● Graph visualizations, trace diffs

● Integrations with other projects

● Async ingestion

● Protobuf & gRPC

● Better Zipkin compatibility

9

New Website (easy to contribute)

10

Example: Client Features matrix (link)

11

(link)

https://www.jaegertracing.io/docs/1.8/client-features/
https://www.jaegertracing.io/docs/1.8/client-features/

Distribution: Docker images

12

Binaries (Linux, MacOS, Windows)

13

Graph Visualizations
Trade Diffs and Trace Graph

14

Graph Visualizations

15

Gantt chart is not great for traces with 10s of thousands of spans

● Trace Diffs

○ Compare two traces

○ Compare one trace against a group of traces (coming soon)

● Trace Graph (coming soon)

○ Call graph visualization with mini-aggregations

○ Showing paths rather than individual RPCs

Comparing trace structures – Unified diff

Comparing trace structures – Shared structure

Comparing trace structures – Absent in one or the traces

Comparing trace structures – More or less within a node

Comparing trace structures – Substantial divergence

"You have an outstanding balance…"

Structural vs. Time

Structural vs. Time – Very similar structures

Structural vs. Time – 2.74 seconds

Structural vs. Time – 50% increase in duration

Structural vs. Time – Are these new spans to blame?

Structural vs. Time – Or is the lag increased throughout?

Comparing span durations – Coming soon

Comparing span durations – Similar durations

Comparing span durations – Nodes that aren't shared

Comparing span durations – Follow the slower nodes

Comparing span durations – Coming soon...

Comparing span durations – Coming soon...

Graph Visualizations

34

● Surface less information

● Condense the structural representation

● Emphasize the differences

● Distinct comparison modes simplify the comparisons

Integrations

35

Integrations

● Jaeger Operator for Kubernetes
○ https://github.com/jaegertracing/jaeger-operator

● OpenCensus libraries and agent ship with exporters for Jaeger
○ https://opencensus.io/guides/exporters/supported-exporters/java/jaeger/

● Istio comes with Jaeger included
○ https://istio.io/docs/tasks/telemetry/distributed-tracing/

● Envoy works with Jaeger native C++ client
○ https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/jaeger_native_tracing

● Eclipse Trace Compass incubator supports importing Jaeger traces
○ https://github.com/tuxology/tracevizlab/tree/master/labs/303-jaeger-opentracing-traces

36

https://github.com/jaegertracing/jaeger-operator
https://opencensus.io/guides/exporters/supported-exporters/java/jaeger/
https://istio.io/docs/tasks/telemetry/distributed-tracing/
https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/jaeger_native_tracing
https://github.com/tuxology/tracevizlab/tree/master/labs/303-jaeger-opentracing-traces

Asynchronous Ingestion

37

Architecture 2017: Push

38

Host or Container

Application

jaeger-client

jaeger-agent

Spans
(UDP)

Control
flow

jaeger-collector

Control flow poll
(sampling, etc.)

DBadaptive
sampling

jaeger-query

UI

Spark jobs

push

Asynchronous span ingestion

39

● Push model was struggling to keep up with traffic spikes

○ Because of sync storage writes

○ Collectors had to drop data randomly

● Kafka is much more elastic for writes

○ Just raw bytes, no schema, no indexing

○ A lot less overhead on the write path

● Data in Kafka allows for streaming data mining & aggregations

● Two new components: jaeger-ingester and jaeger-indexer

Architecture now: Push+Async+Streaming

40

Host or Container

Application

jaeger-client

jaeger-agent

Spans
(UDP)

Control
flow

jaeger
collector

Control flow poll
(sampling, etc.)

DB

adaptive
sampling

jaeger
query

UI

Flink
streaming

Kafka

push

jaeger
ingester

& indexerasync

Protobuf & gRPC
Enabling roadmap

41

Protobuf & gRPC

42

● Internal data model generated from Protobuf IDL

● gRPC connection between jaeger-agent and jaeger-collector

Why

● gRPC plays better with modern routing than TChannel

● Path to official data model and collector/query APIs

● Protobuf-based JSON API

● Unblock development of storage plugins

● (Thrift still supported for backwards compatibility)

Zipkin Compatibility

43

Zipkin Compatibility

● Clients

○ Zipkin B3-*** headers for context propagation

○ Interop between Jaeger-instrumented and Zipkin-instrumented apps

● Collector

○ Zipkin Thrift and JSON v2 span format

○ Use Zipkin instrumentation (e.g. Brave) to send traces to Jaeger

● Outstanding

○ Accept Zipkin spans from Kafka stream

44

Roadmap
http://bit.do/jaeger-roadmap

45

http://bit.do/jaeger-roadmap

Adaptive Sampling

Problem

● APIs have endpoints with different QPS

● Service owners do not know the full impact of sampling probability

Adaptive Sampling is per service + endpoint,

decided by Jaeger backend based on traffic

46

● Jaeger clients support per service/endpoint

sampling strategies

● Can be statically configured in collector

● Pull requests for dynamic recalculations

Adaptive Sampling Status

47

● Based on Kafka and Apache Flink

● Support aggregations and data mining

● Examples:
○ Pairwise dependencies diagram

○ Path-based dependencies diagram

○ Latency histograms

Data Pipeline

48

● Based on gRPC/Protobuf work
● PRs in progress for proof of concept
● Community support for different storage

backends

Storage plugins

49

● Add ability to store/retrieve partial spans

● Use case:
○ Certain workflows are hours long. Unfortunately

spans are only emitted once after it’s Finished().

“Root span” is missing until the complete workflow

is finished.

Partial Spans (community driven)

50

Learn More
Website: jaegertracing.io/
Blog: medium.com/jaegertracing

51

https://jaegertracing.io/
https://medium.com/jaegertracing

Getting in Touch

• GitHub: https://github.com/jaegertracing

• Chat: https://gitter.im/jaegertracing/

• Mailing List - jaeger-tracing@googlegroups.com

• Blog: https://medium.com/jaegertracing

• Twitter: https://twitter.com/JaegerTracing

• Bi-Weekly Community Meetings
52

https://github.com/jaegertracing
https://gitter.im/jaegertracing/Lobby
https://groups.google.com/forum/#!forum/jaeger-tracing
https://medium.com/jaegertracing
https://twitter.com/JaegerTracing
https://docs.google.com/document/d/1ZuBAwTJvQN7xkWVvEFXj5WU9_JmS5TPiNbxCJSvPqX0/edit

Q & A
Open Discussion

53

