
#kubeadm deep dive

Agenda
● Who?
● Mission
● GA
● Roadmap 2019
● Getting Involved
● Q/A

Who?

Who are we?

Timothy St. Clair
SIG Cluster Lifecycle co-lead
Steering Committee Member

Staff Engineer @Heptio/VMWare
@timothysc

Liz Frost
SIG Cluster Lifecycle Contributor

Kube Cuddle creator
SW Engineer @Heptio/VMWare

@liztio

Who are we?
● 100s of contributors across several companies
● Smaller core group of active maintainers

○ VMWare
■ Lubomir, Ross

○ VMWare (née Heptio)
■ Tim, Liz, Jason, Chuck

○ Suse
■ Marek, Rafael

○ Intel
■ Alex, Ed

○ Other/Independent
■ Luxas, Fabrizio, Yago, Di

● Large user community on #kubeadm

Mission

What is our mission?

SIG Cluster Lifecycle’s objective is to
simplify creation, configuration,

upgrade, downgrade, and teardown of
Kubernetes clusters and their

components.

<BRACE FOR RANT}

Why are we doing this?

● To prevent the mistakes of other open source cluster mgmt provisioning
tools
○ Because…

■ Kubernetes is the beginning of the story, not the end
■ commoditizing the deployment of the core raises all boats and

allows the community to focus on solving end user problems
■ “production grade” shouldn’t be firewalled by providers
■ It should “just work”
■ Because cross provider matters

● To make the management of (X) clusters across (Y) providers simple,
secure, and configurable.

Why (unix philosophy)?

● Make each program do one thing well. To do a new job, build afresh rather
than complicate old programs by adding new "features".

● Expect the output of every program to become the input to another, as yet
unknown, program. Don't clutter output with extraneous information.
Don't insist on interactive input.

● Design and build software, to be tried early, ideally within weeks. Don't
hesitate to throw away the clumsy parts and rebuild them.

● Use tools instead of people to lighten a programming task, even if you
have to detour to build the tools and expect to throw some of them out
after you've finished using them.
○ Write down the “Hard Way” and optimize 80% UX Flow with override

Key Design Takeaways

● kubeadm’s task is to set up a best-practice cluster for each minor version

● The user experience should be simple, and the cluster reasonably secure

● kubeadm’s scope is limited; intended to be a composable building block

○ Only ever deals with the local filesystem and the Kubernetes API

○ Agnostic to how exactly the kubelet is run

○ Setting up or favoring a specific CNI network is out of scope

● Composable architecture with everything divided into phases

● Versioned configuration

Component View

Master 1 Master N Node 1 Node N

kubeadm kubeadm kubeadm kubeadm

Cloud Provider Load Balancers Monitoring Logging

Cluster API SpecCluster API Cluster API Implementation

Addons

Kubernetes API

Bootstrapping

Machines

Infrastructure

Layer 2
The scope of kubeadm

Layer 3

Layer 1

Kubeadm is GA!!!

What does GA mean?

● Stable command-line UX — The kubeadm CLI conforms to #5a GA rule of the Kubernetes
Deprecation Policy, which states that a command or flag that exists in a GA version must
be kept for at least 12 months after deprecation.
○ init/join/upgrade/config/reset/token/version

● Stable underlying implementation — kubeadm now creates a new Kubernetes cluster
using methods that shouldn’t change any time soon. The control plane, for example, is
run as a set of static Pods, bootstrap tokens are used for the kubeadm join flow, and
ComponentConfig is used for configuring the kubelet.

● Upgrades between minor versions — The kubeadm upgrade command is now fully GA. It
handles control plane upgrades for you, which includes upgrades to etcd, the API Server,
the Controller Manager, and the Scheduler. You can seamlessly upgrade your cluster
between minor or patch versions (e.g. v1.12.2 -> v1.13.1 or v1.13.1 -> v1.13.3).

https://kubernetes.io/docs/reference/using-api/deprecation-policy/#deprecating-a-flag-or-cli
https://kubernetes.io/docs/reference/using-api/deprecation-policy/#deprecating-a-flag-or-cli
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-join/
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cluster-lifecycle/0014-20180707-componentconfig-api-types-to-staging.md
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-upgrade/
https://etcd.io/
https://kubernetes.io/docs/reference/using-api/api-overview/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/

What does GA mean?

● Configuration file schema — With the new v1beta1 API version, you can now tune almost
every part of the cluster declaratively and thus build a “GitOps” flow around
kubeadm-built clusters. In future versions, we plan to graduate the API to version v1 with
minimal changes (and perhaps none).
○ Examples and references are now in standard Godoc format
○ Config is split into parts

■ InitConfiguration
■ ClusterConfiguration - stored on cluster in a configmap
■ JoinConfiguration

https://godoc.org/k8s.io/kubernetes/cmd/kubeadm/app/apis/kubeadm/v1beta1

kubeadm: InitConfiguration

apiVersion: kubeadm.k8s.io/v1beta1
kind: InitConfiguration
localAPIEndpoint:
 advertiseAddress: "10.100.0.1"
 bindPort: 6443
nodeRegistration:
 criSocket: "/var/run/crio/crio.sock"
 kubeletExtraArgs:
 cgroupDriver: "cgroupfs"
bootstrapTokens:
 ...

• Usage
• “kubeadm init --config …”

• Why
• Custom API endpoint address
• Specify init bootstrap tokens
• Pass custom kubelet flags
• Set node name/taints

kubeadm: Cluster Configuration

apiVersion: kubeadm.k8s.io/v1beta1
kind: ClusterConfiguration
kubernetesVersion: "v1.12.2"
imageRepository: registry.example.com
networking:
 serviceSubnet: "10.96.0.0/12"
 dnsDomain: "cluster.local"
etcd:
 ...
apiServer:
 extraArgs:
 ...
 extraVolumes:
 ...

• Usage
• “kubeadm init --config …”

• Why
• Fine tune cluster defaults
• Custom arguments and volume

mounts to control plane
components

What does GA mean?

● The “toolbox” interface of kubeadm — Also known as phases. If you don’t want to
perform all kubeadm init tasks, you can instead apply more fine-grained actions using the
kubeadm init phase command (for example generating certificates or control plane Static
Pod manifests).
○ Currently this only applies to `kubeadm init`
○ In 2019 - `kubeadm join phases`

● etcd setup — etcd is now set up in a way that is secure by default, with TLS
communication everywhere, and allows for expanding to a highly available cluster when
needed.

https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-init/
https://kubernetes.io/docs/tasks/administer-cluster/static-pod/
https://kubernetes.io/docs/tasks/administer-cluster/static-pod/
https://etcd.io/

kubeadm: init phases
preflight Run pre-flight checks

kubelet-start Writes kubelet settings and (re)starts the kubelet

certs Generates certificates for a Kubernetes cluster

kubeconfig Generates all kubeconfig files for the control plane and the admin kubeconfig file

control-plane Generates all static Pod manifest files necessary to establish the control plane

etcd Generates static Pod manifest file for local etcd.

upload-config Uploads the currently used configuration for kubeadm to a ConfigMap

mark-control-plane Mark a node as a control-plane

bootstrap-token Manage kubeadm-specific bootstrap token functions

addon Installs required addons for passing Conformance tests

kubeadm: init phases

Run
Preflight
Checks

Install
DNS and

Proxy
Addons

Setup the RBAC
Authorization

System

Taint and
label the
master

Upload
kubeadm &

kubelet
config to a
ConfigMap

Kubelet
Start

Wait for
the control

plane to
be healthy

Generate
static Pod
Manifests

for the
Control
Plane

Generate
Certificates

Generate
KubeConfig

Files

Generate a (by
default random)
Bootstrap Token

kubeadm joinkubeadm join

Preflight
Checks

Fetches
Init

Configuration

Run
Specific
Checks

base on the
Init

Configuration

Checks
if the Cluster
Configuration

Supports

Runs
Kubeadm

Init
Preflight
Check

Generates
static Pod
Manifests
for new
Control
Plane

Bootstraps
Kubelet

Uploading
Currently Used

InitConfiguration

Applies
Master

Label and
Taints

--experimental-control-plane

--experimental-control-plane

kubeadm upgrade: Control Plane

Preflight
Checks

Checks
if the

cluster
is

healthy

Gets the
configuration

from the
"kubeadm-config"

ConfigMap

Enforces
all

version
skew

policies

Upgrades
the

control
plane
Static
Pods

Upgrade
RBAC

rules and
addons

Certificate Management

etcd
kubelet

kubelet

API Server Proxied Pod Pod user

Certificate Management

● apiserver
● apiserver-kubelet-client
● front-proxy-client
● etcd-server
● etcd-peer
● etcd-healthcheck-client
● apiserver-etcd-client
● user certificates

Certificate Hierarchy

● root CA
○ apiserver
○ apiserver-kubelet-client

● front-proxy CA
○ front-proxy-client

● etcd CA
○ etcd-server
○ etcd-peer
○ etcd-healthcheck-client
○ apiserver-etcd-client

Certificate Hierarchy

● root CA
○ apiserver
○ apiserver-kubelet-client

● front-proxy CA
○ front-proxy-client

● etcd CA
○ etcd-server
○ etcd-peer
○ etcd-healthcheck-client
○ apiserver-etcd-client

root
CA

etcd
CA

front
proxy
CA

kube
client

api
server

etcd
server

etcd
peer

etcd
health
check

api
etcd
client

front
proxy
client

Certificate Generation

● From Scratch

root
CA

etcd
CA

front
proxy
CA

kube
client

api
server

etcd
server

etcd
peer

etcd
health
check

api
etcd
client

front
proxy
client

Certificate Generation

● From Scratch

● Provided CAs (+ keys)

root
CA

etcd
CA

front
proxy
CA

kube
client

api
server

etcd
server

etcd
peer

etcd
health
check

api
etcd
client

front
proxy
client

Certificate Generation

● From Scratch

● Provided CAs (+ keys)

● All External (keys optional)

root
CA

etcd
CA

front
proxy
CA

kube
client

api
server

etcd
server

etcd
peer

etcd
health
check

api
etcd
client

front
proxy
client

Certificate Generation

● From Scratch

● Provided CAs (+ keys)

● All External (keys optional)

● Mixed

root
CA

etcd
CA

front
proxy
CA

kube
client

api
server

etcd
server

etcd
peer

etcd
health
check

api
etcd
client

front
proxy
client

Other Certificate Options

● Generate CSRs!

● `kubeadm alpha certs renew`

● Certificates API requests

2019 Roadmap

2019 Roadmap

● Config to v1
● HA to GA

○ Full test automation
● Continued promotion of alpha phases to subcommands

○ e.g. join phases
● Grand unified field theory on ComponentConfiguration

○ Working group being formed.
● Incorporate etcdadm and bundles when stable
● Test and release automation …

Testing and release tooling

2019 Roadmap - CI + Release

● CI
○ KIND as the only PR blocking job
○ Move all SCL jobs to periodics
○ CI = release artifacts
○ Kill `kubernetes-anywhere` with extreme prejudice

● Release
○ Move all package building into k/k

■ .deb/rpm build artifacts
○ Keep signing and publishing separate in the release repo
○ Work with k8s-infra team

■ Want -devel and -stable repos & registries

Getting Involved
http://bit.ly/kubeadm-survey

How can you contribute
● Contributing to SIG Cluster Lifecycle documentation

● We’re working on growing the contributor/reviewers pool; scaling the SIG

● We have “Office Hours” for our projects: weekly for kubeadm, bi-weekly for kops and
kubespray…

● Cluster API office hours weekly for both US West Coast and EMEA

● Full list of SIG meetings and links to minutes and recordings can be found on SIG page

● Attend our Zoom meetings / be around on Slack

● Look for “good first issue”, “help wanted” and “sig/cluster-lifecycle” labeled issues in
our repositories

https://docs.google.com/document/d/1eq0mWjnyQiDXhEGPU7tulbnDuvkaUehSz7u3NRxxpc8/edit
https://github.com/kubernetes/community/tree/master/sig-cluster-lifecycle#meetings

Logistics

● Follow the SIG Cluster Lifecycle YouTube playlist

● Check out the meeting notes for our weekly office hours meetings

● Join #sig-cluster-lifecycle, #kubeadm channels

● Check out the kubeadm setup guide, reference doc and design doc

● Read how you can get involved and improve kubeadm!

https://www.youtube.com/watch?v=I9764DRBKLI&list=PL69nYSiGNLP29D0nYgAGWt1ZFqS9Z7lw4
https://docs.google.com/document/d/1deJYPIF4LmhGjDVaqrswErIrV7mtwJgovtLnPCDxP7U/edit
https://kubernetes.slack.com/messages/sig-cluster-lifecycle/
https://kubernetes.slack.com/messages/C2P1JHS2E/
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
https://kubernetes.io/docs/admin/kubeadm/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/implementation-details/
https://github.com/kubernetes/kubeadm/blob/master/docs/release-cycle.md

Thank You!
Q/A

