

#### **CNCF Cross-cloud Cl Deep Dive:** Using Cross-cloud with Cloud-native Network Functions (CNFs)

Taylor Carpenter & Denver Williams, Vulk.coop

### CNCF Cross-cloud CI + CNF



The Cross-Cloud CI project tests Kubernetes (K8s) and projects running on K8s across multiple cloud providers.

The CNF project provides reference code and test comparisons of Cloud-native Network Functions.

#### Agenda - 35 Minutes



- Intro to CNCF Cross-cloud CI Project
  - Cross-cloud Kubernetes provisioner
- Intro to CNCF Cloud-native Network Functions (CNFs) Project
  - Reproducible CI for NFV testing
  - Using cross-cloud with CNFs
- Lessons learned / Challenges
- What's next
- How to collaborate







#### **Quick Intro to CNCF Cross-cloud CI**





https://github.com/crosscloudci/crosscloudci

### What is CNCF Cross-cloud CI?



**What?** The CNCF Cross-cloud CI project consists of a composable base CI system, a status repository server and a dashboard.

The underlying CI testing system has 3 stages (build pipeline per project, cloud provisioning with cross-cloud, app deployments with cross-project) that continually validate the interoperability of each CNCF project for any commit on stable and head across all supported cloud providers.

The testing system can reuse artifacts from a project's existing CI system or generate new build artifacts. The status repository server collects the test results and the dashboard displays them.

### Goal: to Target CNCF Projects







#### Implemented



# Goal: to Target Public, Bare Metal & Private Clouds





#### **CNCF CI Platform Timeline**



**CLOUD NATIVE** 

**COMPUTING FOUNDATION** 

- Feb 28, 2017: CI Platform started
- Jan 26, 2018: v.1.0.0 Dashboard released
- Mar 20, 2018: v1.2.0 included ONAP
- Sept 7, 2018: v1.5.0 included Envoy
- Oct 31, 2018: v1.6.0 included OCI



### **CI Status Dashboard Overview**



#### **CI Dashboard Overview:**

- Overview of <u>cncf.ci</u>
  - Shows status of 3 pipeline stages: Build, Provision and App Deployments
  - Refreshes at 3:00am Eastern Time every day
  - Supports dynamically adding/removing active clouds and projects
  - Clicking on Build status badge opens CI system build job URL
  - Clicking on Release Name opens project's GitHub commit URL
  - Clicking on Deployment status badge opens "provisioning/app-deploy" job URL

#### CI Dashboard at cncf.ci





CI DASHBOARD: Overview

O Last updated 16 hours ago

|    | Project                      | Build   | Release            | Deployments |         |                 |                    |                        |                    |                    |                                |
|----|------------------------------|---------|--------------------|-------------|---------|-----------------|--------------------|------------------------|--------------------|--------------------|--------------------------------|
|    |                              | Status  | Stable<br>Head     | AWS         | Azure   | GCE             | IBM Cloud          | Bare Metal<br>(Packet) | OpenStack          | VMware<br>vSphere  | Oracle Cloud<br>Infrastructure |
| ۲  | Kubernetes<br>Orchestration  | Success | v1.12.2<br>dde084f | Success     | SUCCESS | Success Success | Success Success    | Success Success        | Success Success    |                    | SUCCESS                        |
| 0  | Prometheus                   |         | v2.4.3<br>8b91d39  | SUCCESS     | SUCCESS | SUCCESS         | SUCCESS            | SUCCESS                | SUCCESS            | SUCCESS            | SUCCESS                        |
| Ø  | CoreDNS<br>Service Discovery |         | v1.2.5<br>95c9e14  | SUCCESS     | SUCCESS | SUCCESS         | SUCCESS<br>SUCCESS | SUCCESS                | SUCCESS<br>SUCCESS | SUCCESS<br>SUCCESS | SUCCESS                        |
| >  | Fluentd                      |         | v1.2.6<br>3dabdc5  | Success     | Success | Success         | Success            | Success                | Success            | Success<br>Success | SUCCESS                        |
| ă, | Linkerd<br>Service Mesh      |         | 1.5.1<br>36dc2c9   | SUCCESS     | SUCCESS | SUCCESS         | SUCCESS<br>SUCCESS | SUCCESS                | SUCCESS<br>SUCCESS |                    | SUCCESS                        |
| ¢D | Envoy<br>Service Mesh        | SUCCESS | v1.8.0<br>0ebe247  | SUCCESS     | SUCCESS | SUCCESS         | SUCCESS<br>SUCCESS | SUCCESS                | SUCCESS<br>SUCCESS | SUCCESS<br>SUCCESS | SUCCESS                        |
| ٢  | ONAP<br>Network Automatic    | Success | v1.1.1<br>9a3841e  | SUCCESS     |         | Success         | SUCCESS            | Success                | SUCCESS            | SUCCESS            | SUCCESS                        |

### **Testing System Overview**



- Build pipeline per project (optional, can use project's build artifacts)
- Kubernetes provisioning pipeline (cross-cloud)
- App deployment pipeline (cross-project)

### **Testing System Overview**



- **Build pipeline per project** (optional, can use project's build artifacts)
- Kubernetes provisioning pipeline (cross-cloud)
- App deployment pipeline (cross-project)

## **K8s Provisioning Pipeline Stage**



- **1. Build:** Prepare provisioning software from the cross-cloud project
- 2. Artifacts: Collect K8s artifact pinnings from the previous K8s builds
- 3. Cross-Cloud: Deploy K8s onto each cloud using cross-cloud provisioner
- 4. Update-Dashboard: Update deployment badges

| Build       | Artifacts    | Cross-Cloud  | Update-Dashboard |
|-------------|--------------|--------------|------------------|
| Cross-Cloud | Build-Source | Kubernetes_d | O Dashboard      |
| Socat       |              | Provisioning |                  |



#### CI DASHBOARD: Overview

#### O Last updated 16 hours ago





#### CI DASHBOARD: Overview

#### O Last updated 16 hours ago

|     | Project                      | Build   | Release            | Deployments |         |                 |                 |                        |                 |                   |                                |  |
|-----|------------------------------|---------|--------------------|-------------|---------|-----------------|-----------------|------------------------|-----------------|-------------------|--------------------------------|--|
|     |                              | Status  | Stable<br>Head     | AWS         | Azure   | GCE             | IBM Cloud       | Bare Metal<br>(Packet) | OpenStack       | VMware<br>vSphere | Oracle Cloud<br>Infrastructure |  |
| *   | Kubernetes<br>Orchestration  |         | v1.12.2<br>dde084f | SUCCESS     | SUCCESS | Success Success | SUCCESS         | SUCCESS                | SUCCESS         | SUCCESS           | SUCCESS                        |  |
| 0   | Prometheus                   |         | v2.4.3<br>8b91d39  | SUCCESS     | SUCCESS | Success Success | SUCCESS         | SUCCESS                | SUCCESS         |                   | SUCCESS                        |  |
| Ø   | CoreDNS<br>Service Discovery |         | v1.2.5<br>95c9e14  | SUCCESS     | SUCCESS | Success Success | SUCCESS         | SUCCESS                | SUCCESS         | SUCCESS           | SUCCESS                        |  |
|     | Logging                      |         | v1.2.6<br>3dabdc5  | SUCCESS     | SUCCESS | SUCCESS         | SUCCESS         | SUCCESS                | SUCCESS         |                   | SUCCESS                        |  |
| ŝ   | Linkerd<br>Service Mesh      |         | 1.5.1<br>36dc2c9   | SUCCESS     | Success | Success Success |                 | Success Success        | Success Success |                   |                                |  |
| ¢\$ | Envoy<br>Service Mesh        | SUCCESS | v1.8.0<br>0ebe247  | SUCCESS     | SUCCESS | SUCCESS         | SUCCESS SUCCESS | SUCCESS                | SUCCESS         | SUCCESS SUCCESS   | SUCCESS                        |  |
|     | ONAP<br>Network Automati     |         | v1.1.1<br>9a3841e  | SUCCESS     | SUCCESS | Success         | SUCCESS         | SUCCESS                | SUCCESS         | SUCCESS           | SUCCESS                        |  |

#### 2. Provision w/ cross-cloud



#### CI DASHBOARD: Overview

0

y

 $\mathbf{r}$ 

Report bug

O Last updated 16 hours ago



#### 3. Deploy w/ cross-project

17

Created for CNCF by Cross-Cloud CI

# **CI** System Technology Overview



- Unified CI/CD platform: GitLab
- App deployments and e2e tests: K8s manifest management with Helm
- Cross-cloud provisioning: Terraform, Cloud-init and per cloud K8s configuration
- Automated builds and deployments: Git + per project yaml configuration



# Quick Intro to CNCF Cloud-native Network Functions (CNFs)

#### **CNF** Project Intro



CNCF is ushering the evolution of Virtualized Network Functions (VNFs) to Cloud-native Network Functions (CNFs) running on Kubernetes in public, private, or hybrid clouds.

The transition to CNFs will provide 3 major benefits to service providers:

- 1. Cost savings (capex/opex)
- 2. Improved resiliency
- 3. Higher development velocity





The CNF project facilitates open collaboration on the development and use of Cloud-native Network Functions for real world use cases. The project provides reference code and test comparisons of CNFs.

https://github.com/cncf/cnfs

#### **CNF** Project Goals



The ideal outcome of the CNF project is that a third party developer can run the provided CNF reference code/benchmarking tests with an API key and a couple of CLI commands.

**Note**: the CNF project is still in the prototype stage. Additional reference code and benchmarking tests will be added incrementally.



#### **Reproducible CI for NFV testing**





Hardware

#### Public:

- Packet Cloud
- FD.io CSIT lab



Software

#### Open:

- 100% open source
- Vanilla Kubernetes
- Helm



Community

#### **Collaboration:**

- Cross-group
- Multi-vendor

#### **Reproducible Infrastructure**





**Machines** 



**Networking** 

# **Provisioning Physical Machines**



Specs at a glance:

- CPU: Dual socket Xeon Gold 5120 (2.2Ghz)
- Cores: 24 per CPU (48 total)
- Memory: 384 GB of DDR4 ECC
- Storage: 3.2 TB of NVMe Flash
- NIC: Quad port Intel x710

**KubeCon** 

CloudNativeCon

North America 2018

The system hardware configuration is based on the <u>Packet m2.xlarge.x86</u>.

Using either the default <u>dual port Mellanox ConnectX-4 NIC</u> or a <u>quad port Intel x710 NIC</u>. The NIC ports are connected to 10GbE ports on the top-of-rack switches.<sup>26</sup>

#### Vanilla K8s Clusters



#### **Kubernetes test environment:**

- Deployment of Kubernetes with cross-cloud
- Kubernetes services running on bare metal





### Layer-2 Network Wiring







### Layer-2 Host Configuration





### Layer 2 CNF Connections







#### Kubernetes test clusters:

- Deployment of Kubernetes with cross-cloud
  - + Ansible + cpu management policies
- Kubernetes services running on bare metal
- High-performance Layer-2 networking w/VPP for CNFs and host vSwitch
- Connecting CNFs over memif sockets





#### **Using Cross-cloud with CNF Project**

### **Cross-cloud Enhanced for CNFs**



- Added support for Ubuntu 18.04 as a host OS
- Support reserved Packet instances
- Enable support for cpu-management-policies
- Support worker node reboots for kernel config (eg. grub) updates



**KubeCon** 

CloudNativeCon

North America 2018



#### **Lessons Learned / Challenges**

### Lessons Learned / Challenges



Creating neutral and easily reproducible test comparisons has its obstacles, including:

- General challenges transitioning from VNFs to CNFs
- Reproducible infrastructure provisioning
- Reproducible clusters with high-performance data planes

# Transitioning from VNFs to CNFs LubeCon LoudNativeCon

- Moving from network functionality from physical hardware to encapsulating the software in a virtual machine (P2V) is generally easier than containerizing the software (P2C or V2C)
- Many network function virtualization VMs rely on kernel hacks or otherwise do not restrict themselves to just the stable Linux kernel userspace ABI
  - They also often need to use DPDK or SR-IOV to achieve sufficient performance
- Containers provide nearly direct access to the hardware with little or no virtualization overhead
  - But they expect containerized applications to use the stable userspace Linux kernel ABI, not to bypass it



- Just because it's in the API does not mean it works
- Access to the switch configuration does not mean you can set it up as expected
- Limits in provider facilities and between customer projects

#### **Reproducible Clusters**



- OpenStack
- Host OS builds, packages, defaults
- Standard plugins vs source builds



#### What's Next?

### What's Next for Cross-cloud?



#### **Cross-Group Collaboration:**

- Network Service Mesh (NSM) collaboration
- Merge enhancements from forks/pull requests (eg. VMWare)
- Gathering feedback from End Users, CNCF Projects and K8s Community
- Planning next iteration of project

### What's Next for Cross-cloud?



#### Features:

- Supporting Network Service Mesh
- Layer-2 for different providers
- Supporting kubeadm
- Supporting offline services like DNS

### What's Next for CNCF CNFs?



**Events and presentations:** 

- KubeCon CNFs BoF on Wed, Dec 12 at 2:35pm PT
  - <u>https://sched.co/JCLS</u>
- Mobile World Congress, Barcelona, February 25-28, 2019
  - <u>https://www.mwcbarcelona.com</u>
- Open Networking Summit, San Jose, California, April 3 5, 2019
  - <u>https://events.linuxfoundation.org/events/open-networking-summit-north-america-2019/</u>

### What's Next for CNCF CNFs?



#### Enhancements:

- Comparisons with OpenStack, Firecracker, Singularity
- Supporting more environments (eg. Amazon bare metal)
- Adding more use cases



#### How to collaborate





- Attend CI WG meetings:
  - <u>https://github.com/cncf/wg-ci</u>
- Subscribe to the CNCF CI public mailing list:
  - <u>https://lists.cncf.io/g/cncf-ci-public</u>
- Create issues on GitHub:
  - <u>https://github.com/crosscloudci/cross-cloud/issues</u>
- Review KubeCon Cross-cloud Cl Intro Slides:
  - <u>https://kccna18.sched.com/event/Grci</u>

### **Connect with Cross-cloud Cl**





@crosscloudci





**#cncf-ci** slack channel



crosscloudci@vulk.coop

### **Connect with CNF Project**



















cncfcnfs@vulk.coop

#### Q&A



# Thank you for your participation!



- W. Watson @wavell
- Lucina Stricko @lixuna
- Denver Williams
  @denverwilliams
- Taylor Carpenter
  <u>@taylor</u>





### Thank you!





#### Today's Demo Prepared by:

taylor@vulk.coop lucina@vulk.coop watson@vulk.coop denver@debian.nz



#### cross-cloud ci

# KubeCon CloudNativeCon

8

#### North America 2018