
Debugging etcd
Joe Betz, Google Jingyi Hu, Google

About Us

Joe Betz (@jpbetz on github)

Lead engineer for etcd at Google. etcd open source project maintainer.
Active contributor to Kubernetes.

Jingyi Hu (@jingyih on github)

Software engineer at Google. Active contributor to open source etcd and
Kubernetes.

Agenda

● etcd Recap
● How etcd Serves and Stores Data
● Tools of the Trade
● Debugging Approaches
● Keeping your etcd Healthy
● Q/A

etcd Recap

etcd Recap

Distributed Key/Value store

“Consensus Datastore”

Reliably manage the coordination state of distributed
systems

Related: Google Chubby, Apache ZooKeeper

● Highly Available
● Strong consistency model
● Scalable watch mechanism
● Concurrency control primitives

etcd

etcd Recap

etcd
Cluster Size Majority Fault Tolerance

1 1 0

2 2 0

3 2 1

4 3 1

5 3 2

RAFT Consensus Algorithm

etcd Recap

Prometheus

“open-source monitoring system and time series database”

BoltDB

“embedded key/value database for Go”

gRPC

“A high performance, open-source universal RPC
framework” (API Also exposed via JSON+HTTP)

How etcd Serves and
Stores Data

Key Space
 /registry/pods/production/service1-xxxxxxx
 /registry/replicasets/development/service1
 /registry/replicasets/development/service2
 /registry/replicasets/production/service2

k8s type namespace resource
name

prefix

Lexically ordered index makes “range reads” efficient: RANGE <start-key>..<end-key>

(Not all kubernetes key names are obvious, for example, nodes are keyed as “minions” for legacy reasons)

lexically ordered

Data Serving

Request/Response Operations

● RANGE <start_key>..<end_key>
● PUT <key> <value>
● DELETE RANGE <start_key>..<end_key>
● TXN (if <condition> then <op1, ..> else <op2, ..>)

Data Serving

Client

Leader

Follower

2
1PUT

RAFT
Chatter

Follower

Linearizable Consistency
a.k.a. External Consistency

OK

Request/Response Operations

● RANGE <start_key>..<end_key>
● PUT <key> <value>
● DELETE RANGE <start_key>..<end_key>
● TXN (if <condition> then <op1, ..> else <op2, ..>)

Data Serving

Client

Leader

Follower

OK
RANGE

2
1PUT

4

3

?

RAFT
Chatter

Follower

Linearizable Consistency
a.k.a. External ConsistencyRequest/Response Operations

● RANGE <start_key>..<end_key>
● PUT <key> <value>
● DELETE RANGE <start_key>..<end_key>
● TXN (if <condition> then <op1, ..> else <op2, ..>)

Data Serving

Streaming Operations

● WATCH

client etcd

WATCH CREATED <watch-id>
EVENT <watch-id> PUT <key1> <value1>
EVENT <watch-id> DELETE <key2>
...

CREATE WATCH <key1>..<key2>
...

gRPC bidirectional stream

Data Serving

Streaming Operations

● WATCH

Eventual Consistency

client etcd

WATCH CREATED <watch-id>
EVENT <watch-id> PUT <key1> <value1>
EVENT <watch-id> DELETE <key2>
...

CREATE WATCH <key1>..<key2>
...

gRPC bidirectional stream

Client

Leader

Follower

Cache

Watch
Stream

RAFT
Chatter

Follower

Data Serving

Streaming Operations

● WATCH

Eventual Consistency

client etcd

WATCH CREATED <watch-id>
EVENT <watch-id> PUT <key1> <value1>
EVENT <watch-id> DELETE <key2>
...

CREATE WATCH <key1>..<key2>
...

gRPC bidirectional stream

Client

Routine

Leader

Follower

Cache

Watch
Stream

OK2
1Write

RAFT
Chatter

Follower

Data Serving

Streaming Operations

● WATCH Client

Routine

Leader

Follower

Cache

Watch
Stream

OK2
1Write

Read 3

4?

RAFT
Chatter

Follower

Eventual Consistency

client etcd

WATCH CREATED <watch-id>
EVENT <watch-id> PUT <key1> <value1>
EVENT <watch-id> DELETE <key2>
...

CREATE WATCH <key1>..<key2>
...

gRPC bidirectional stream

Data Storage

“Multi-version concurrency control.”
Copy-on-write for all modifications.

etcd - MVCC keyspace. Values may be
accessed by key+version. This is used to
implement the watch operation.

BoltDB - MVCC internally enable 1 write + N
reads to be executed concurrently.

Bolt DB

etcd
keyspace

Compaction vs. Defragmentation

CompactionCompaction applies to the etcd keyspace

● Removes all versions of objects older
than a specific revision number

● Kubernetes default policy: all data older
than 5 minutes every 5 minutes

● Kube-apiserver requests compactions.
etcd auto-compaction is disabled. Bolt DB

etcd
keyspace

Bolt DB

etcd
keyspace

Compaction vs. Defragmentation

Defragmentation

Defragmentation applies to the bolt db file

● Recovers all free space in the bolt db file.
● Only to shrink a db file as bolt does not

automatically shrinks it’s file.
● Etcd will defrag and the file only if

requested. This is a “stop-the-world”
operation.

etcd “data-dir”
<data-dir>
└── member
 ├── snap
 │ ├── 0000000000000007-0000000000038287.snap
 │ ├── 0000000000000007-000000000003a998.snap
 │ ├── 0000000000000007-000000000003d0a9.snap
 │ ├── 0000000000000007-000000000003f7ba.snap
 │ ├── 0000000000000007-0000000000041ecb.snap
 │ └── db
 └── wal
 ├── 0000000000000004-000000000001fe18.wal
 ├── 0000000000000005-0000000000027d16.wal
 ├── 0000000000000006-000000000002fc26.wal
 ├── 0000000000000007-0000000000037b2a.wal
 └── 0000000000000008-000000000003fa1c.wal

For each write:
● 1. Append write to WAL
● 2. Apply write to Keyspace

How etcd Stores and Serves Data

Write Ahead Log (.wal files)
Term:1, Idx:1

PUT
/x1 -> a

Term:1, Idx:2

PUT
/x1 -> x

Term:1, Idx:3

DELETE
/x2

Term:1, Idx:4

SNAPSHOT

Term:1, Idx:6

PUT
/x2 -> y

Term:1, Idx:5

PUT
/x3 -> z

For each write:
● 1. Append write to WAL
● 2. Apply write to Keyspace

How etcd Stores and Serves Data

/x1 -> {rev 1: a, rev 2: x}

/x2 -> {rev 3: , rev 6: y}

/x3 -> {rev 5: z}

Write Ahead Log (.wal files)

Persisted Keyspace (db file)

Term:1, Idx:1

PUT
/x1 -> a

Term:1, Idx:2

PUT
/x1 -> x

Term:1, Idx:3

DELETE
/x2

Term:1, Idx:4

SNAPSHOT

Term:1, Idx:6

PUT
/x2 -> y

Term:1, Idx:5

PUT
/x3 -> z

For each write:
● 1. Append write to WAL
● 2. Apply write to Keyspace

Every “--snapshot-count” writes:
● Create a snapshot file
● Record revision snapshot was

created to WAL
● Remove WAL files older than

the snapshot

RAFT ensures WAL log is the same
on all members of an etcd cluster!

How etcd Stores and Serves Data

Term:1, Idx:1

PUT
/x1 -> a

Term:1, Idx:2

PUT
/x1 -> x

Term:1, Idx:3

DELETE
/x2

Term:1, Idx:4

SNAPSHOT

Term:1, Idx:6

PUT
/x2 -> y

Term:1, Idx:5

PUT
/x3 -> z

/x1 -> {rev 1: a, rev 2: x}

/x2 -> {rev 3: , rev 6: y}

/x3 -> {rev 5: z}

Write Ahead Log (.wal files)

Persisted Keyspace (db file)
/x1 -> {rev 1: a, rev 2: x}

/x2 -> {rev 3: }

Snapshots (.snap files)

/x1 -> {rev 1: a, rev 2: x}

/x2 -> {rev 3: , rev 6: y}

Tools of the Trade

Tools of the Trade
$ ETCDCTL_API=3 etcdctl

NAME:
etcdctl - A simple command line client for etcd3.

USAGE:
etcdctl

VERSION:
3.3.0

COMMANDS:
get Gets the key or a range of keys
put Puts the given key into the store
del Removes the specified key or range of keys [key, range_end)
txn Txn processes all the requests in one transaction
compaction Compacts the event history in etcd
alarm disarm Disarms all alarms
alarm list Lists all alarms
defrag Defragments the storage of the etcd members with given endpoints
endpoint health Checks the healthiness of endpoints specified in `--endpoints` flag
endpoint status Prints out the status of endpoints specified in `--endpoints` flag
watch Watches events stream on keys or prefixes
version Prints the version of etcdctl
lease grant Creates leases
lease revoke Revokes leases
lease keep-alive Keeps leases alive (renew)
member add Adds a member into the cluster
member remove Removes a member from the cluster

...

Tools of the Trade

$ ETCDCTL_API=3 etcdctl get --prefix --keys-only /

/registry/apiregistration.k8s.io/apiservices/v1.authentication.k8s.io
/registry/apiregistration.k8s.io/apiservices/v1.authorization.k8s.io
/registry/apiregistration.k8s.io/apiservices/v1.autoscaling
/registry/apiregistration.k8s.io/apiservices/v1.batch
...

Tools of the Trade

$ ETCDCTL_API=3 etcdctl get /registry/pods/kube-system/kube-dns-xxxxxx-xxx

/registry/pods/kube-system/kube-dns-xxxxxx-xxx
k8s

v1Pod�
�
kube-dns-xxxxxx-xxxxkube-dns-xxxxxxxxxx-

kube-system"*$xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxx����Z
k8s-appkube-dnsZ
pod-template-hash
3345330137b�
kubernetes.io/created-by�
{"kind":"SerializedReference","apiVersion":"v1","reference":{"kind":"ReplicaS
et","namespace":"kube-system","name":"kube-dns-xxxxxxxxxx","uid":"xxxxxxxx-xx
xx-xxxx-xxxx-xxxxxxxxxxxx","apiVersion":"extensions","resourceVersion":"288"}
}
b.
*scheduler.alpha.kubernetes.io/critical-podj_

...

PROTOBUF

$ auger --help

Inspect and analyze kubernetes objects in binary storage
encoding used with etcd 3+ and boltdb.

Usage:
 auger [command]

Available Commands:
 decode Decode objects from the kubernetes binary key-value store encoding.
 encode Encode objects to the kubernetes binary key-value store encoding.
 extract Extracts kubernetes data from the boltdb '.db' files etcd persists to.
 help Help about any command

Flags:
 -h, --help help for auger

Use "auger [command] --help" for more information about a command.

github.com/jpbetz/auger

Tools of the Trade

http://github.com/jpbetz/auger

Tools of the Trade

$ ETCDCTL_API=3 etcdctl get /registry/events/default/mypod | auger decode

 apiVersion: v1
 count: 1
 firstTimestamp: 2018-05-30T20:41:35Z
 involvedObject:
 apiVersion: v1
 fieldPath: spec.containers{mypod}
 kind: Pod
 name: mypod
 namespace: default
 resourceVersion: "30573"
 uid: xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx
 kind: Event
 lastTimestamp: 2018-05-30T20:41:35Z
 message: Container image "gcr.io/example/pod:1.0.0" already present on machine
 metadata:
 creationTimestamp: 2018-05-30T20:41:35Z
 name: pod-xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx.00000000000000
 namespace: default
 uid: xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx
 reason: Pulled
 source:
 component: kubelet
 host: production-00-xxxxxxxx
 type: Normal

Tools of the Trade

$ auger extract --file <backup-file> --key /registry/events/default/mypod

 apiVersion: v1
 count: 1
 firstTimestamp: 2018-05-30T20:41:35Z
 involvedObject:
 apiVersion: v1
 fieldPath: spec.containers{mypod}
 kind: Pod
 name: mypod
 namespace: default
 resourceVersion: "30573"
 uid: xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx
 kind: Event
 lastTimestamp: 2018-05-30T20:41:35Z
 message: Container image "gcr.io/example/pod:1.0.0" already present on
machine
 metadata:
 creationTimestamp: 2018-05-30T20:41:35Z
 name: pod-xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx.00000000000000
 namespace: default
 uid: xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx
 reason: Pulled
 source:
 component: kubelet
 host: production-00-xxxxxxxx
 type: Normal

Tools of the Trade
$ etcd-dump-logs -h
Usage of ./etcd-dump-logs:
 -entry-type string
 If set, filters output by entry type. Must be one or more than one of:
 ConfigChange, Normal, Request, InternalRaftRequest,
 IRRRange, IRRPut, IRRDeleteRange, IRRTxn,
 IRRCompaction, IRRLeaseGrant, IRRLeaseRevoke
 -start-index uint
 The index to start dumping
 -start-snap string
 The base name of snapshot file to start dumping
 -stream-decoder string
 The name of an executable decoding tool, the executable must process
 hex encoded lines of binary input (from etcd-dump-logs)
 and output a hex encoded line of binary for each input line

https://github.com/etcd-io/etcd/tree/master/tools/etcd-dump-logs

https://github.com/etcd-io/etcd/tree/master/tools/etcd-dump-logs

Tools of the Trade
$ etcd-dump-logs /var/etcd/data
...
term index type data
 1 1 conf method=ConfChangeAddNode id=2
 2 2 conf method=ConfChangeRemoveNode id=2
 2 3 conf method=ConfChangeUpdateNode id=2
 2 4 conf method=ConfChangeAddLearnerNode id=3
 7 13 norm ID:8 txn:<success:<request_delete_range:<key:"a"
range_end:"k8s\000\n\025\n\002v1\022\017RangeAllocation\022#\n\022\n\000\022\000\032\000\"\000*\0002\0008\000B\000z\000\022\01310.0.0.0/1
6\032\000\032\000\"\000" > > failure:<request_delete_range:<key:"a"
range_end:"k8s\000\n\025\n\002v1\022\017RangeAllocation\022#\n\022\n\000\022\000\032\000\"\000*\0002\0008\000B\000z\000\022\01310.0.0.0/1
6\032\000\032\000\"\000" > > >
 8 14 norm ID:9 compaction:<physical:true >

Debugging Approaches

Debugging Approaches

sanity checks

Is etcd
running?

space exceed

request latency
too large

server fail to
start

server crashed

trace request

inspect data

disk too slow

request is too
large

server
overloaded

network issue

server not
responding

configuration or
database issue?

Debugging Approaches

sanity checks

Is etcd
running?

space exceed

request latency
too large

server fail to
start

server crashed

trace request

inspect data

disk too slow

request is too
large

server
overloaded

network issue

server not
responding

configuration or
database issue?

Debugging Approaches

● Sanity checks: is etcd running?
$ docker ps | grep etcd
CONTAINER ID IMAGE COMMAND CREATED STATUS
79c8331e02c6 .../etcd "/bin/sh -c ..." 2 days ago Up 2 days

$ docker ps | grep etcd
CONTAINER ID IMAGE COMMAND CREATED STATUS
Ad39be67ae27 .../etcd "/bin/sh -c ..." 2 days ago Exited (137) 5 seconds ago

$ kubectl get componentstatuses
NAME STATUS MESSAGE ERROR
etcd Healthy {"health": "true"}

$ curl -L http://127.0.0.1:2379/health
{"health": "true"}

$ curl -L http://127.0.0.1:2379/health
Failed to connect to 127.0.0.1 port 2379: Connection refused

HTTP probe failed with statuscode: 503

http://127.0.0.1:2379/health
http://127.0.0.1:2379/health

Debugging Approaches

● Sanity checks: is etcd running?
$ ETCDCTL_API=3 etcdctl --write-out=table endpoint status
+----------------+------------------+---------+---------+-----------+-----------+------------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | RAFT TERM | RAFT INDEX |
+----------------+------------------+---------+---------+-----------+-----------+------------+
| 127.0.0.1:2379 | 3dad195a8fe24bd1 | 3.1.11 | 5.7 MB | false | 7 | 260921 |
+----------------+------------------+---------+---------+-----------+-----------+------------+

$ ETCDCTL_API=3 etcdctl --write-out=table member list
+------------------+---------+---------------------+-----------------------------+-----------------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS |
+------------------+---------+---------------------+-----------------------------+-----------------------+
9654975ed4a2f3f	started	etcd-10.127.240.162	https://10.127.240.162:2380	http://127.0.0.1:2379
241738ddc3b07bb9	started	etcd-10.127.240.163	https://10.127.240.163:2380	http://127.0.0.1:2379
3dad195a8fe24bd1	started	etcd-10.127.240.161	https://10.127.240.161:2380	http://127.0.0.1:2379
+------------------+---------+---------------------+-----------------------------+-----------------------+

Debugging Approaches

sanity checks

Is etcd
running?

space exceed

request latency
too large

server fail to
start

server crashed

trace request

inspect data

disk too slow

request is too
large

server
overloaded

network issue

server not
responding

configuration or
database issue?

Debugging Approaches

sanity checks

Is etcd
running?

space exceed

request latency
too large

server fail to
start

server crashed

trace request

inspect data

disk too slow

request is too
large

server
overloaded

network issue

server not
responding

configuration or
database issue?

Debugging Approaches

sanity checks

Is etcd
running?

space exceed

request latency
too large

server fail to
start

server crashed

trace request

inspect data

disk too slow

request is too
large

server
overloaded

network issue

server not
responding

configuration or
database issue?

Debugging Approaches

● Sanity checks: is etcd running?
$ grep "[CE] |" etcd.log

2017-11-14 23:30:34.340030 E | rafthttp: failed to read 5137d09ebac61b82 on stream MsgApp v2 (context canceled)
2017-11-14 23:30:34.340454 E | rafthttp: failed to read 72f26c9f9da79ea7 on stream Message (context canceled)
2017-11-14 23:31:03.130335 E | rafthttp: failed to read 5137d09ebac61b82 on stream MsgApp v2 (unexpected EOF)
2017-11-14 23:31:30.694572 C | mvcc/backend: cannot commit tx (write agent-1/etcd.data/member/snap/db: file too
large)

Example: freelist corruption
https://github.com/etcd-io/bbolt/pull/67

https://github.com/etcd-io/bbolt/pull/67

Debugging Approaches

sanity checks

Is etcd
running?

space exceed

request latency
too large

server fail to
start

server crashed

trace request

inspect data

disk too slow

request is too
large

server
overloaded

network issue

server not
responding

configuration or
database issue?

Debugging Approaches

● Sanity checks: space quota exceeded?
$ ETCDCTL_API=3 etcdctl --write-out=table endpoint status
+----------------+------------------+---------+---------+-----------+-----------+------------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | RAFT TERM | RAFT INDEX |
+----------------+------------------+---------+---------+-----------+-----------+------------+
| 127.0.0.1:2379 | 3dad195a8fe24bd1 | 3.1.11 | 8.0 GB | false | 7 | 260921 |
+----------------+------------------+---------+---------+-----------+-----------+------------+

Alternatively, look at ’db’ file in the snapshot directory
$ sudo ls -la ${path to etcd data dir}/member/snap/

$ ETCDCTL_API=3 etcdctl alarm list
memberID:3dad195a8fe24bd1 alarm:NOSPACE

Error message:
“etcdserver: mvcc: database space exceeded”

Debugging Approaches

sanity checks

Is etcd
running?

space exceed

request latency
too large

server fail to
start

server crashed

trace request

inspect data

disk too slow

request is too
large

server
overloaded

network issue

server not
responding

configuration or
database issue?

Debugging Approaches

● Sanity checks: request latency too large
$ ETCDCTL_API=3 etcdctl --write-out=table endpoint status

Failed to get the status of endpoint 127.0.0.1:2379 (context deadline exceeded)

$ grep “apply entries took too long” etcd.log

...
2018-10-15 20:54:02.963571 W | etcdserver: apply entries took too long [12.66726791s for 1 entries]
2018-10-15 20:54:02.963617 W | etcdserver: avoid queries with large range/delete range!
...

Debugging Approaches

● Sanity checks: request latency too large
○ Request size too large?

■ Trace request
○ Server overloaded?

■ Check server resource utilization: CPU starvation, memory swapping
■ Trace request

○ Disk performance
■ /metrics endpoint
■ two disk related metrics:

● wal_fsync_duration_seconds
● backend_commit_duration_seconds

○ Networking
■ Could cause slow apply and frequent leader election

Debugging Approaches

sanity checks

Is etcd
running?

space exceed

request latency
too large

server fail to
start

server crashed

trace request

inspect data

disk too slow

request is too
large

server
overloaded

network issue

server not
responding

configuration or
database issue?

Debugging Approaches

● Trace request
$ less kube-apiserver.log | grep “total time” -B 5 -A 5
...
I1016 00:39:03.152718 1 trace.go:76] Trace[2046021670]: "List /apis/batch/v1/jobs" (started:
2018-10-16 00:38:29.832824845 +0000 UTC m=+380.058697937) (total time: 33.319846272s):
Trace[2046021670]: [21.225676154s] [21.225669191s] Listing from storage done
Trace[2046021670]: [33.319842654s] [11.741150944s] Writing http response done (320186 items)
I1016 00:39:03.152947 1 wrap.go:42] GET /apis/batch/v1/jobs: (33.322082585s) 200
[[kube-controller-manager/v1.9.6 (linux/amd64)
kubernetes/cb15136/system:serviceaccount:kube-system:cronjob-controller] [::1]:42464]
...

pkg/controller/cronjob/cronjob_controller.go
func (jm *CronJobController) syncAll() {

…
jl, err := jm.kubeClient.BatchV1().Jobs(metav1.NamespaceAll).List(metav1.ListOptions{}) <-

listing from etcd directly, w/o pagination
…

}

Debugging Approaches

sanity checks

Is etcd
running?

space exceed

request latency
too large

server fail to
start

server crashed

trace request

inspect data

disk too slow

request is too
large

server
overloaded

network issue

server not
responding

configuration or
database issue?

Debugging Approaches

● Inspect data

Revisions

Object Count

S
iz

e

Debugging Approaches

● Inspect data

Space Used ~= # of Objects x Size per Object x Uncompacted Revisions

Proportional to update
rate!

Debugging Approaches

● Inspect data
○ Workload can increase data volume

■ Each write creates a new object version.
■ Can be further amplified if workload increase DB fragmentation.

○ Data volume can increase workload
■ Latency of range read (listing) increases with the count of objects returned.
■ Expensive operations could increase latency or even timeout other request.

I1016 00:39:03.152718 1 trace.go:76] Trace[2046021670]: "List /apis/batch/v1/jobs" (started:
2018-10-16 00:38:29.832824845 +0000 UTC m=+380.058697937) (total time: 33.319846272s):
Trace[2046021670]: [21.225676154s] [21.225669191s] Listing from storage done
Trace[2046021670]: [21.57869171s] [353.015556ms] Self-linking done
Trace[2046021670]: [33.319842654s] [11.741150944s] Writing http response done (320186 items)
I1016 00:39:03.152947 1 wrap.go:42] GET /apis/batch/v1/jobs: (33.332082585s) 200
[[kube-controller-manager/v1.9.6 (linux/amd64)
kubernetes/cb15136/system:serviceaccount:kube-system:cronjob-controller] [::1]:42464]

Keeping your etcd
Healthy

Keeping your etcd Healthy

● Monitoring
○ etcd uses Prometheus for metrics reporting.
○ /metrics endpoint
○ Example grafana dashboard

Keeping your etcd Healthy

● Use officially maintained versions

etcd-dev mailing list, Sept. 6, 2018:

If you run etcd in production, please read!

A couple recent issue report on github for both etcd and Kubernetes github have
highlighted the fact that some older versions of etcd contain defects severe enough that
we should avoid running them in production, including a data corruption bug. Also, with
Kubernetes deprecating etcd 2.x support this year and the officially maintained etcd
versions being 3.1+,

The minimum recommended versions of etcd to run in production are:

3.1.11+
3.2.10+
3.3.0+

Keeping your etcd Healthy

● Backup your etcd
○ For disaster recovery purpose.
○ Per backup check

■ ETCDCTL_API=3 etcdctl snapshot status (ONLY for etcdctl v3.3.10+, v3.2.25+, v3.1.20+).
■ bbolt check

○ Regularly validate restoration from the backup files.

● Upgrades
○ Recommend upgrading to officially maintained etcd versions.
○ Refer to Documentation/upgrades for upgrade process.

● Downgrades
○ Currently, only possible if backup the entire etcd data before upgrading.
○ Ongoing: etcd downgrade support for 1 minor version.

https://github.com/etcd-io/etcd/issues/9306

https://github.com/etcd-io/etcd/tree/master/Documentation
https://github.com/etcd-io/etcd/tree/master/Documentation/upgrades
https://github.com/etcd-io/etcd/issues/9306

How to get involved

● Contact:
○ Email: etcd-dev@googlegroups.com
○ IRC: #etcd IRC channel on freenode.org
○ Community meeting: 11:00 PST Tuesday Monthly.

https://github.com/etcd-io/etcd#community-meetings
● Issues and PRs: https://github.com/etcd-io/etcd
● CONTRIBUTING!

https://github.com/etcd-io/etcd/blob/master/CONTRIBUTING.md

mailto:etcd-dev@googlegroups.com
https://github.com/etcd-io/etcd#community-meetings
https://github.com/etcd-io/etcd
https://github.com/etcd-io/etcd/blob/master/CONTRIBUTING.md

Thanks!
Joe Betz, Google Jingyi Hu, Google

Extra Slides

Inspecting Load and Data

● Check kube-apiserver logs for high latency or timed out requests
● Check /var/log/etcd.log for slow operation warnings (“entries took too

long...”)
● Check WAL log with etcd-dump-logs
● Check etcd object counts with auger or etcdctl

Load ~= Request Volume x Response object count x Response object size

Keeping your etcd Healthy

Object count quotas? Rate limits?

How do prevent accidental (or deliberate) misuse from crashing control
planes?

Tools of the Trade

Tools of the Trade

● etcdctl - etcd CLI
● auger - data inspection
● etcd-dump-logs - RAFT log inspection

Tools of the Trade
$ ETCDCTL_API=3 etcdctl

NAME:
etcdctl - A simple command line client for etcd3.

USAGE:
etcdctl

VERSION:
3.3.0

COMMANDS:
get Gets the key or a range of keys
put Puts the given key into the store
del Removes the specified key or range of keys [key, range_end)
txn Txn processes all the requests in one transaction
compaction Compacts the event history in etcd
alarm disarm Disarms all alarms
alarm list Lists all alarms
defrag Defragments the storage of the etcd members with given endpoints
endpoint health Checks the healthiness of endpoints specified in `--endpoints` flag
endpoint status Prints out the status of endpoints specified in `--endpoints` flag
watch Watches events stream on keys or prefixes
version Prints the version of etcdctl
lease grant Creates leases
lease revoke Revokes leases
lease keep-alive Keeps leases alive (renew)
member add Adds a member into the cluster
member remove Removes a member from the cluster

...

Tools of the Trade
$ ETCDCTL_API=3 etcdctl get --prefix --keys-only /

/registry/apiregistration.k8s.io/apiservices/v1.

/registry/apiregistration.k8s.io/apiservices/v1.authentication.k8s.io

/registry/apiregistration.k8s.io/apiservices/v1.authorization.k8s.io

/registry/apiregistration.k8s.io/apiservices/v1.autoscaling

/registry/apiregistration.k8s.io/apiservices/v1.batch

...

Tools of the Trade
$ ETCDCTL_API=3 etcdctl get /registry/pods/kube-system/kube-dns-xxxxxx-vwh

/registry/pods/kube-system/kube-dns-xxxxxx-vwh
k8s

v1Pod�
�
kube-dns-xxxxxx-vwhzwkube-dns-778977457c-
 kube-system"*$df815185-022f-11e8-96ed-42010a8000922����Z
k8s-appkube-dnsZ
pod-template-hash
3345330137b�
kubernetes.io/created-by�
{"kind":"SerializedReference","apiVersion":"v1","reference":{"kind":"ReplicaSet","namespace":"kube-system","name":"kube-dns-77
8977457c","uid":"df6419c0-022f-11e8-96ed-42010a800092","apiVersion":"extensions","resourceVersion":"288"}}
b.
*scheduler.alpha.kubernetes.io/critical-podj_

...

PROTOBUF

$ auger --help

Inspect and analyze kubernetes objects in binary storage
encoding used with etcd 3+ and boltdb.

Usage:
 auger [command]

Available Commands:
 decode Decode objects from the kubernetes binary key-value store encoding.
 encode Encode objects to the kubernetes binary key-value store encoding.
 extract Extracts kubernetes data from the boltdb '.db' files etcd persists to.
 help Help about any command

Flags:
 -h, --help help for auger

Use "auger [command] --help" for more information about a command.

Source at github.com/jpbetz/auger

Contributions welcome!

Tools of the Trade

http://github.com/jpbetz/auger

Tools of the Trade
$ auger extract -f $DB_FILE

/registry/apiregistration.k8s.io/apiservices/v1.
/registry/apiregistration.k8s.io/apiservices/v1.authentication.k8s.io
/registry/apiregistration.k8s.io/apiservices/v1.authorization.k8s.io
/registry/apiregistration.k8s.io/apiservices/v1.autoscaling
/registry/apiregistration.k8s.io/apiservices/v1.batch
/registry/apiregistration.k8s.io/apiservices/v1.networking.k8s.io
/registry/apiregistration.k8s.io/apiservices/v1.storage.k8s.io
/registry/apiregistration.k8s.io/apiservices/v1beta1.apiextensions.k8s.io
/registry/apiregistration.k8s.io/apiservices/v1beta1.apps
/registry/apiregistration.k8s.io/apiservices/v1beta1.authentication.k8s.io
/registry/apiregistration.k8s.io/apiservices/v1beta1.authorization.k8s.io
...

Tools of the Trade
$ auger extract -f $DB_FILE --fields key,value-size

/registry/apiregistration.k8s.io/apiservices/v1. 590
/registry/apiregistration.k8s.io/apiservices/v1.authentication.k8s.io 665
/registry/apiregistration.k8s.io/apiservices/v1.authorization.k8s.io 662
/registry/apiregistration.k8s.io/apiservices/v1.autoscaling 635
/registry/apiregistration.k8s.io/apiservices/v1.batch 617
/registry/apiregistration.k8s.io/apiservices/v1.networking.k8s.io 653
/registry/apiregistration.k8s.io/apiservices/v1.storage.k8s.io 644
/registry/apiregistration.k8s.io/apiservices/v1beta1.apiextensions.k8s.io 676
/registry/apiregistration.k8s.io/apiservices/v1beta1.apps 628
/registry/apiregistration.k8s.io/apiservices/v1beta1.authentication.k8s.io 679
/registry/apiregistration.k8s.io/apiservices/v1beta1.authorization.k8s.io 676
...

Tools of the Trade
$ auger extract -f $DB_FILE --fields all-versions-value-size,version-count,key | sort -n

174930 42 /registry/minions/gke-demo-default-pool-912fd0f4-vw4p
...
590 1 /registry/apiregistration.k8s.io/apiservices/v1.
665 1 /registry/apiregistration.k8s.io/apiservices/v1.authentication.k8s.io

Tools of the Trade
$ etcd-dump-logs -h
Usage of ./etcd-dump-logs:
 -data-dir string

 -start-index uint
 The index to start dumping
 -start-snap string
 The base name of snapshot file to start dumping

Tools of the Trade
$ etcd-dump-logs /var/etcd/data
...
 2 930433 norm method=SYNC time="2018-01-26 20:08:55.64006588 +0000 UTC"
 2 930434 norm header:<ID:5163765266442295869 > range:<key:"/registry/configmaps/kube-system/"
range_end:"/registry/configmaps/kube-system0" >
 2 930435 norm header:<ID:5163765266442295870 > range:<key:"/registry/services/endpoints/kube-system/"
range_end:"/registry/services/endpoints/kube-system0" >
 2 930436 norm header:<ID:5163765266442295871 > range:<key:"/registry/persistentvolumeclaims/kube-system/"
range_end:"/registry/persistentvolumeclaims/kube-system0" >
 2 930437 norm header:<ID:5163765266442295872 > range:<key:"/registry/pods/kube-system/"
range_end:"/registry/pods/kube-system0" >
 2 930438 norm header:<ID:5163765266442295873 > range:<key:"/registry/controllers/kube-system/"
range_end:"/registry/controllers/kube-system0" >
 2 930439 norm header:<ID:5163765266442295874 > range:<key:"/registry/secrets/kube-system/"
range_end:"/registry/secrets/kube-system0" >
…

etcd Recap

RAFT Terms:

● Partition Tolerance
● Leader Election (Leader, Followers, …)
● Quorum

etcd

Network Partition

Deep dive: etcd
Wednesday, December 12 • 11:40am - 12:15pm
https://sched.co/JAo2

The Life of a Kubernetes Watch Event
Thursday, December 13 • 4:30pm - 5:05pm
https://sched.co/GrUX

https://sched.co/JAo2
https://sched.co/GrUX

How shall I help with etcd development

● Contact:
○ Email: etcd-dev@googlegroups.com
○ IRC: #etcd IRC channel on freenode.org
○ Community meeting: 11:00 PST Tuesday Biweely

https://github.com/etcd-io/etcd#community-meetings
● Issues and PRs: https://github.com/etcd-io/etcd
● CONTRIBUTING!

https://github.com/etcd-io/etcd/blob/master/CONTRIBUTING.md

mailto:etcd-dev@googlegroups.com
https://github.com/etcd-io/etcd#community-meetings
https://github.com/etcd-io/etcd
https://github.com/etcd-io/etcd/blob/master/CONTRIBUTING.md

Scalability

Can etcd scale horizontally? No, RAFT global consistency and high availability at the cost of
funneling all operations through a leader.

Limits:

● 4 GB total data limit (enforced default), 8 GB supported [--quota-backend-bytes]
● 1.5 MB object limit (enforced default) [--max-request-bytes]
● ~50k watchers
● ~200 writes/s per client connection, ~20k writes/s total
● ~500 reads/s per client connection, ~50k reads/s total

Based on etcd 3.2+, GCE n1-standard-2 machine type with 7.5 GB memory, 2x CPUs

Components are docker containers
in the Master Kubelet

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
kubernetes-master Ready <none> 5h58m v1.13.0-alpha.0.2315+b11211ed8cfbf5-dirty
kubernetes-minion-group-6xj5 Ready <none> 5h58m v1.13.0-alpha.0.2315+b11211ed8cfbf5-dirty
kubernetes-minion-group-9pq9 Ready <none> 5h58m v1.13.0-alpha.0.2315+b11211ed8cfbf5-dirty
kubernetes-minion-group-c9sx Ready <none> 5h58m v1.13.0-alpha.0.2315+b11211ed8cfbf5-dirty

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
77a9877ea212 k8s.gcr.io/etcd "..." 4 hours ago Up 4 hours k8s_etcd-container_etcd-server...
554af5042894 c667a020c3ca "..." 4 hours ago Up 4 hours k8s_kube-scheduler...
ec9263161265 99b428320f67 "..." 4 hours ago Up 4 hours k8s_kube-apiserver...
a18e666fa976 a4512aa017c1 "..." 4 hours ago Up 4 hours k8s_kube-controller-manager...

$ kubectl get componentstatuses
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd Healthy {"health":true}

$ curl http://localhost:${COMPONENT_PORT}/healthz
Ok

$ curl http://localhost:${COMPONENT_PORT}/metrics
...

http://localhost:10250/healthz
http://localhost:10250/healthz

