
DBaaS on Kubernetes



STEVE CROCE

WESLEY ASHKINAZY

PRODUCT MANAGER, ELASTICSEARCH

LEAD DEVELOPER, ELASTICSEARCH

&

Follow @OBJECTROCKET for slides and announcements.



About ObjectRocket
We help clients build better apps faster so they can focus on their mission, 
not their database.

Support
It’s the best hands-on 
support, hands-down.

24x7x365 support from 
database experts with 
financially-backed SLAs.

Technology
DBaaS platform

Hassle-free hosting for 
MongoDB®, 
Elasticsearch® + KIbana®, 
and Redis®

Expertise
We’re experts in 
scaling and supporting 
complex production 
environments. 

MONGO®, MongoDB® and MongoDB® Design are registered trademarks of MongoDB, Inc. Redis® and the Redis® logo are trademarks of Salvatore Sanfilippo in the US and 
other countries. Elasticsearch® and Kibana® are  trademarks of Elasticsearch BV, registered in the US and in other countries.



Why we’re 
adopting 

Kubernetes

What You’ll See Today

The design 
choices that 

we faced

The choices 
that we 

made

What we’re 
going to be 
doing next



The Road to Kubernetes



Assumes bare-metal 
environment

Our Original Hosting Platform

Built Circa 2012 Built on OpenVZ

Custom orchestration, 
hardware, management 

systems



What’s Changed?

Built circa 2012 Heavily based on openVZ containers

custom orchestration, hardware and 
infrastructure management

Assumes a bare metal environment

Not available 
yet

6 years is a long time in tech

Custom orchestration 
is not a differentiator 

and awesome 
standard tools exist

Cloud usage has grown and 
not all need bare metal 

performance

Docker has become the 
de-facto container format



Can Kubernetes Solve Our Problem?
E

as
e

Time



• Well-built, open source, modern 
orchestration

• First-class citizen in the clouds we 
want support

• People want to develop for it

• Operators make it easy… There are 
open source options everywhere

• It’s 🔥🔥🔥🔥

• Not built for stateful apps... 
databases are pretty damn stateful

• Most databases don’t tolerate 
disappearing resources

• All operators aren’t easy… we’ll 
need a whole lot more functionality

Kubernetes + ObjectRocket:

Pros Cons
Kubernetes Easy 

Meter



Control Plane

High-level Platform Architecture

Infrastructure API

Logs

Monitoring 

 Customer API

Region X

...

Cluster Provisioning

K8s Cluster A

Network ingress 

Customer 
Namespace

Operator

Customer 
Namespace

Region Y

Cluster Provisioning

K8s Cluster A

Network ingress 

Customer 
Namespace

Operator

Customer 
Namespace



What Our Service Must Do

Service Features04
● Safely scale up/out/in/down
● Apply minor and patch updates
● Add-on dashboards and tooling

Database 
Administration03

● Cluster configuration and plugins
● Perform regular backups
● Running database utilities

Security02
● Handle multiple tenants
● Cluster Certificates
● Database User/Roles CRUD

The Basics01
● Safely create a full cluster
● Make sure the cluster is healthy
● Delete all resources when asked



Database-as-a-Service: The Basics



What Our Service Must Do

Service Features04
● Safely scale up/out/in/down*
● Orchestrate support utilities
● Add-on dashboards and tooling

Database 
Administration03

● Cluster configuration and plugins
● Perform regular backups
● Apply minor and patch updates
● Running database utilities

Security02
● Database User CRUD
● Database User roles
● IP whitelist CRUD
● Cluster Certificates

The Basics01
● Safely create a full cluster
● Make sure the cluster is healthy
● Delete all resources when asked
● Handle multiple tenants

Service Features04
● Safely scale up/out/in/down
● Apply minor and patch updates
● Add-on dashboards and tooling

Database 
Administration03

● Cluster configuration and plugins
● Perform regular backups
● Running database utilities

Security02
● Handle multiple tenants
● Cluster Certificates
● Database User/Roles CRUD

The Basics01
● Safely create a full cluster
● Make sure the cluster is healthy
● Delete all resources when asked



Elasticsearch Deployment Architecture



Operators: TLDR



Kubernetes Operators
Operators are a way to wrap business logic and manual operations around kubernetes 
features and components. 

Requests

Standard Resource
Requests

Custom Resource 
requests

Actions Applied
Actions

CRD*(s) Controller

Intercept events 
Perform custom logic
Translate to standard resources

Register custom resources.

CRD = Custom Resource Definition



Stateful Set

Operator Custom Resource Example

apiVersion: elasticsearch.objectrocket.com/v1
kind: ElasticsearchMultiRole
metadata:
  name: multirole-deployment
  labels:
    instance-id: "exampleInstanceID"
spec:
  acls:
    - "0.0.0.0/0"
  userlist: |-
    {
      "exampleuser": {"hash": "...", "role":  
["admin"]}
    }
  networkHost: 0.0.0.0
  elasticsearchImage:  
objectrocket/elasticsearch:oss-6.4.0-v4
  multiRole:
    replicas: 3
    curator:
      curatorImage: "objectrocket/curator:0.0.1"
    javaOpts: "-Xms2048m -Xmx2048m"
    storageConfig:
      storageClass: "standard"
      size: 16
    resourceRestrictions:
      ...
    

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: es-data
  labels:
    ...
spec:
  selector:
    ...
  serviceName: elasticsearch
  replicas: 3
  template:
    ...
    spec:
      containers:
      - name: es-data
        image:  
docker-elasticsearch:6.3.2
        env:
        - name: NAMESPACE
        ...
        resources:
          ...
        ports:
        ...
  volumeClaimTemplates:
  - metadata:
      name: storage
    spec:
      ...

Custom Resource Standard Resources

---
apiVersion: v1
kind: Service
metadata:
  name: elasticsearch
  labels:
    component: elasticsearch
    role: data
spec:
  selector:
    component: elasticsearch
  ports:
  - name: http
    port: 9200
---

Services

---
apiVersion: v1
kind: Service
metadata:
  name: elasticsearch
  labels:
    component: elasticsearch
spec:
  ports:
  - port: 9300
    name: transport
  clusterIP: None
  selector:
    component: elasticsearch
---

apiVersion: v1
kind: Secret
metadata:
  name: elasticsearch-cert
data:
  certificate.crt: |
    ---
    
adsgdsagadgasdgasdhafhffjbdasv
naiuurilghszdlgahadskjghadslkg
hasdlkghalsdkh
---

Secrets

apiVersion:  batch/v1beta1
kind: CronJob
metadata:
  name: [instance-id]-backups
spec:
  schedule: “30 2 * * *"
  jobTemplate:
    spec:
      template:
        spec:
          containers:
          - name: es-snapshots
            image: curator:v2
            args:
            ...
          restartPolicy: ...

CronJob



Operator Development Options

Note: The CoreOS Operator Framework did not yet exist. 
We probably would have used that if it did.

Quick Ramp Control Verdict

● Best way to ramp
● Not easily expandable to 

our end goal ; built 3-4 k8s 
versions ago

1

Off-the-Shelf Operator

● Great for standardizing across 
operators

● Helps bootstrap new operators
● Available options didn’t have 

sufficient community buy-in

2

Operator Utility Library

● Most up front work
● Allowed us to target our 

specific needs from the 
start

3

Build from Scratch

Latest and 
Greatest 



Operator Development Options

Note: The CoreOS Operator Framework did not yet exist. 
We probably would have used that if it did.

Quick Ramp Control Verdict

● Best way to ramp
● Not easily expandable to 

our end goal ; built 3-4 k8s 
versions ago

1

Off-the-Shelf Operator

● Great for standardizing across 
operators

● Helps bootstrap new operators
● Available options didn’t have 

sufficient community buy-in

2

Operator Utility Library

● Most up front work
● Allowed us to target our 

specific needs from the 
start

3

Build from Scratch

Latest and 
Greatest 

WINNER: 

POC

WINNER: 

Production



Deployments with Persistence: Stateful Sets



• Unique network identifiers

• Persistent storage

• Ordered, graceful deployment and 
scaling.

• Ordered, automated rolling 

updates.

Stateful Sets

You can’t have Databases in Kubernetes without them



Database-as-a-Service: Database Security



What Our Service Must Do

Service Features04
● Safely scale up/out/in/down*
● Orchestrate support utilities
● Add-on dashboards and tooling

Database 
Administration03

● Cluster configuration and plugins
● Perform regular backups
● Apply minor and patch updates
● Running database utilities

Security02
● Database User CRUD
● Database User roles
● IP whitelist CRUD
● Cluster Certificates

The Basics01
● Safely create a full cluster
● Make sure the cluster is healthy
● Delete all resources when asked
● Handle multiple tenants

Service Features04
● Safely scale up/out/in/down
● Apply minor and patch updates
● Add-on dashboards and tooling

Database 
Administration03

● Cluster configuration and plugins
● Perform regular backups
● Running database utilities

Security02
● Handle multiple tenants
● Cluster Certificates
● Database User/Roles CRUD

The Basics01
● Safely create a full cluster
● Make sure the cluster is healthy
● Delete all resources when asked



Multi-Tenancy



Multi-Tenancy: Namespaces



Tenant Security by Namespace
Ingress ACLs  
via Envoy proxy

Namespace isolation and network 
encryption with Weave Net

Auth with 
SearchGuard

Unique 
secrets / 
creds / 
certs per 
cluster



User Management: Remote Command



User Management
Controlling the auth plugin that runs on the Elasticsearch 
containers

• User and role management will need to be executed by the operator
• Apache licensed Elasticsearch does not include an auth implementation 

Apache 2.0 licensed Elasticsearch plugin that secures Elasticsearch 
by providing authentication and authorization.

• Managed with pre-built command-line utility (sgadmin)
• Community Edition

• Internal user database for authentication
• Role based permissions for authorization
• Cluster and Index level permissions
• Live reloads of user database



How to Execute Updates? 

Option 1 Option 2 Option 3

Centralized 
Service k8s Job Remote 

Command

Standalone service, 
listening on a queue and 
executing its own copy of 
sgadmin

The operator starts up a 
k8s job which executes 
its own copy of sgadmin 
in instance namespace

The operator remotely 
executes a copy of 
sgadmin that exists on 
each member of the 
cluster



Remote Command

Pros
● Security: Uses the k8s API server port; minimizes open ports on the 

cluster
● Security: Leverages unique local admin certs we generate for each 

cluster
● Simplicity: Uses the version of sgadmin installed on each cluster, 

simplifying the support of multiple versions of the plugin
● Efficiency: No extra pods/run on demand means less wasted 

resources
Cons

● Temporary multi-process container: Introduces another process 
running in the Elasticsearch container breaking docker paradigms. 

● Risk: client-go’s remotecommand library isn’t widely used



Database-as-a-Service: DB Administration



What Our Service Must Do

Service Features04
● Safely scale up/out/in/down*
● Orchestrate support utilities
● Add-on dashboards and tooling

Database 
Administration03

● Cluster configuration and plugins
● Perform regular backups
● Apply minor and patch updates
● Running database utilities

Security02
● Database User CRUD
● Database User roles
● IP whitelist CRUD
● Cluster Certificates

The Basics01
● Safely create a full cluster
● Make sure the cluster is healthy
● Delete all resources when asked
● Handle multiple tenants

Service Features04
● Safely scale up/out/in/down
● Apply minor and patch updates
● Add-on dashboards and tooling

Database 
Administration03

● Cluster configuration and plugins
● Perform regular backups
● Running database utilities

Security02
● Handle multiple tenants
● Cluster Certificates
● Database User/Roles CRUD

The Basics01
● Safely create a full cluster
● Make sure the cluster is healthy
● Delete all resources when asked



Automating Administration Tasks

https://xkcd.com/1319/ 

https://xkcd.com/1319/


Customization: Config Maps



Something special in a specific file (e.g. elasticsearch.yml)

Config maps for custom configurations

$ES_HOME/config

├── elasticsearch.yml

├── log4j2.properties

├── jvm.options

├── certs

│   ├── ...

├── sgconfig

│   ├── ...

Image defaults

ConfigMap

elasticsearch.yml <contents>
           
           elasticsearch.yml

ConfigMap 
Volume

/customConfig/
├── elasticsearch.yml

/$ES_HOME/config
├── elasticsearch.yml

docker-entrypoint

ConfigMap
file1 <contents>

file2 <contents>

           

ConfigMap 
Volume

/$ES_HOME/config
├── elasticsearch.yml
├── ...
├── custom_directory/
│   ├── file1

New directory for stopwords, synonyms, etc.



Recurring Tasks: Cron management



Managing Recurring Tasks

Backups:
● Take a daily backup and retain the last 2 weeks
● Implementation: CronJob created with cluster that runs a daily backup

Elasticsearch Curator:
● Take regular actions against indexes (delete, create, aliases, etc.)
● Implementation: A CR is passed at any time that:

○ Creates a CronJob with the specified schedule
○ Provides the Curator configuration and action files via ConfigMaps

apiVersion: batch/v1beta1
kind: CronJob
metadata:
  name: [instance-id]-backups
spec:
  schedule: “30 2 * * *"
  jobTemplate:
    spec:
      template:
        spec:
          containers:
          - name: es-snapshots
            image: curator:v2
            args:
            ...
          restartPolicy: ...



Database-as-a-Service: Service Features



What Our Service Must Do

Service Features04
● Safely scale up/out/in/down*
● Orchestrate support utilities
● Add-on dashboards and tooling

Database 
Administration03

● Cluster configuration and plugins
● Perform regular backups
● Apply minor and patch updates
● Running database utilities

Security02
● Database User CRUD
● Database User roles
● IP whitelist CRUD
● Cluster Certificates

The Basics01
● Safely create a full cluster
● Make sure the cluster is healthy
● Delete all resources when asked
● Handle multiple tenants

Service Features04
● Safely scale up/out/in/down
● Apply minor and patch updates
● Add-on dashboards and tooling

Database 
Administration03

● Cluster configuration and plugins
● Perform regular backups
● Running database utilities

Security02
● Handle multiple tenants
● Cluster Certificates
● Database User/Roles CRUD

The Basics01
● Safely create a full cluster
● Make sure the cluster is healthy
● Delete all resources when asked



Services Features



Safe Updates: StatefulSets



Elasticsearch Rolling Updates

How to ensure that Elasticsearch cluster updates are performed safely and 
without customer impact?

1

1. Node disappears
2. Replicas promoted  / New replicas created on 

live nodes
3. When node returns to cluster, data reshuffles
4. When green, repeat for every node restart

2

3

The Wrong Way

2

1. Cluster allocation disabled
2. Node disappears
3. Replicas on other nodes promoted to primary, but 

no data movement
4. When node returns to cluster, enable allocation
5. Elasticsearch verifies shards on returned node
6. When green, repeat for every node restart

The Right Way

5



StatefulSet Rolling Update Strategies

OnDelete Strategy 
.spec.updateStrategy.type = OnDelete

• Legacy (1.6 and prior) behavior. 

• Controller will not automatically update 
each pod

• User manually deletes pods / controller 
creates new pods

• User manage workflow

RollingUpdate 
.spec.updateStrategy.type = RollingUpdate

• Automated, rolling update of pods

• Controller will delete and recreate 
each pod

• in the same order as pod termination

• Waits until an updated pod is running 
and ready prior to moving on 



Partitioned RollingUpdate

Partitioned RollingUpdates apply changes to pods in reverse order, from {N-1..0}. 

Kubernetes offers a couple of ways to safely tear down each pod:
• A grace period (time) is given before the pod is violently shutdown.
• preHooks: command/script to execute before the pod is violently shutdown.

Partitioned RollingUpdate enables control over when changes are applied to a member of the 
StatefulSet.

• Only pods with an ordinal >= the partition value will be updated when the StatefulSet’s 
.spec.template is updated.

• Pods with an ordinal < the partition will not be updated, even if they are deleted



Complex Updates: State Management



What do we mean by ‘State Management’?

For most Elasticsearch workflows 
Kubernetes manages:

- Pod Operations
- Pod Health
- Volume state

StatefulSets allow us to keep track of 
which members of the cluster have the 
new configuration

By leveraging labels we are able to 
manage what part of our process has 
been applied to an instance

Allocation Management

Disable shard allocation and 
ensure cluster is healthy

Cluster Verification

Verify the cluster is in a 
healthy state

Partition Management

Update ordinal to include the 
next member of the cluster

Allocation Management

Enable shard allocation

Pod/Cluster Health

Ensure Pod and the Cluster 
is healthy

Elasticsearch 
instance restart 

flow



StateMachine

func generateRollingRestartStateMap(numberNodes int) map[string]string {
logrus.Info("Creating Safe Update State Map, number of nodes: ", numberNodes)
stateMachine := make(map[string]string)
state := RollingRestartState
for i := numberNodes - 1; i > -1; i-- {

newApplyPartitionState := fmt.Sprintf("%s%s%d", applyPartitionState, stateDelimiter, i)
newVerifyPartitionApplied := fmt.Sprintf("%s%s%d", verifyPartitionState, stateDelimiter, i)
newDisableAllocation := fmt.Sprintf("%s%s%d", disableAllocationState, stateDelimiter, i)
newEnableAllocationState := fmt.Sprintf("%s%s%d", enableAllocationState, stateDelimiter, i)
stateMachine[state] = newDisableAllocation
stateMachine[newDisableAllocation] = newApplyPartitionState
stateMachine[newApplyPartitionState] = newVerifyPartitionApplied
stateMachine[newVerifyPartitionApplied] = newEnableAllocationState
state = newEnableAllocationState

}
stateMachine[state] = finalState
return stateMachine

}

RollingUpdateState = "rolling_update"
BeginState              = "begin_state"
PodsReadyState       = "pods_ready"
SGInitState             = "sg_init"
FinalAddState          = "final_add_state"
StateCompleted      = "completed"
RollingRestartState = "rolling_restart"
UpdateUserlistState = "update_userlist"
UserlistRollback    = "userlist_rollback"
ForceRollingRestart = "force_rolling_restart"
RollbackResourceStep  = "rollback_resource"
UpdateConfigFilesStep = "update_config_files"
buildingState             = "building"
updatingState             = "updating"
disableAllocationState = "disable_allocation"

State Labels StateMap Generator



Example State Flow



What We Learned



Our Kubernetes Learning Curve

Time

Project 
Start

Idea

The Basics

Real 
Problems

Expertise

Ease



Single 
CR

Single 
CR

Single 
CR

DRY vs. Complexity

Single 
CR

Controller

DRY

Complex

Abstract code

CRs

Controller

Code duplication

Simple

More specific

OR



Velocity of Kubernetes

New feature Use native 
features

Build something 
custom

Wait a 
couple 
months

Wait a 
couple 
months

Yes

Yes

Yes

No

No

No

   On k8s 
roadmap

?

Does 
k8s do 

it?

Is it 
urgent

?



https://www.objectrocket.com/or-on-k8s/

Get free database resources on our 
new Kubernetes-based platform on AWS in the region of your choice. 

MongoDB | Elasticsearch | Redis

Your experience and feedback during the program will play a critical role in 
helping us build the database platform you need.

Try Our Evaluation Program



Check Out the Code

https://github.com/objectrocket 

We’re going to open source our Elasticsearch operator

● It will be Apache 2.0 licensed
● It will arrive in Q1 of 2019

https://github.com/objectrocket


We’re Hiring!

Engineering & Sales

Apply at ObjectRocket.com/Careers


