
N A I L I S L A M OV | S E N I O R D E V E L O P E R | @ N I L E B O X

Custom Deployment Strategies
for Kubernetes

Continuous delivery is an approach where
teams release products frequently and
predictably from source code repository to
production in an automated fashion.

CONTINUOUS DELIVERY

CI/CD PIPELINE

Build & Test Deploy to
Staging

Acceptance
Tests

Deploy to
Production Monitoring

CI/CD PIPELINE

Build & Test Deploy to
Staging

Acceptance
Tests

Deploy to
Production Monitoring

Deployment

Recreate
Kill all existing pods before creating new ones.

RollingUpdate
Gradually scale down the old ReplicaSets and
scale up the new one.

Deployment
strategies

Recreate
Kill all existing pods before creating new ones.

RollingUpdate
Gradually scale down the old ReplicaSets and
scale up the new one.

Deployment
strategies

ROLLING UPDATE

Deployment

ReplicaSet Pod

ReplicaSet Pod

version 2

version 1

ROLLING UPDATE

Deployment

ReplicaSet Pod

version 2

Continuous Deployment

v1

ROLLING UPDATE: TRAFFIC TIMELINE

v1
v1

v1
v1

v1
v1

v1
v1

v1 v2

v2
v2

v2
v2

v2
v2

v2
v2

v2

v1

ROLLING UPDATE: ROLLBACK

v1

v1 v1

v1

v1

v1 v1

v2

v2

v2

v2 v2 v2

v2

v2

v2

How do we detect issues in
production?

Metrics.

How do we reduce impact in
case of a bad release?

Custom deployment strategies.

Custom Deployment Strategies

Pod

BLUE-GREEN DEPLOYMENT

IngressService

Deployment ReplicaSet Pod

PodReplicaSet PodDeployment

“blue”

“green”

version 1

version 2

Production: “blue"

Pod

BLUE-GREEN DEPLOYMENT

IngressService

Deployment ReplicaSet Pod

PodReplicaSet PodDeployment

“blue”

“green”

version 1

version 2

Production: “blue"

Pod

BLUE-GREEN DEPLOYMENT

IngressService

Deployment ReplicaSet Pod

PodReplicaSet PodDeployment

“blue”

“green”

version 1

version 2

Production: “green”

v1

BLUE-GREEN DEPLOYMENT: TRAFFIC TIMELINE

v1 v1v1 v3v2 v2 v2 v2 v2 v2

v1

BLUE-GREEN DEPLOYMENT: ROLLBACK

v1 v1v1 v1v2 v2 v1 v1 v1 v1

Canary release is a technique to reduce the
risk of introducing a new software version
in production by slowly rolling out the
change to a small subset of users before
rolling it out to the entire infrastructure and
making it available to everybody.

MARTINFOWLER.COM

Pod

CANARY DEPLOYMENT

Deployment ReplicaSet Pod

PodReplicaSet PodDeployment

“stable”

“canary”

version 1

version 1

Ingress

Service

Service

90%

10%

Pod

CANARY DEPLOYMENT

Deployment ReplicaSet Pod

PodReplicaSet PodDeployment

“canary”

version 1

version 2

“stable”

Ingress

Service

Service

90%

10%

Pod

CANARY DEPLOYMENT

Deployment ReplicaSet Pod

PodReplicaSet PodDeployment

“canary”

version 2

version 2

“stable”

Ingress

Service

Service

90%

10%

Pod

CANARY DEPLOYMENT

Deployment ReplicaSet Pod

PodReplicaSet PodDeployment

“stable”

“canary”

version 2

version 2

Ingress

Service

Service

90%

10%

v1

CANARY DEPLOYMENT: TRAFFIC TIMELINE

v1 v1 v1 v1 v1 v1 v1

v1

v1 v2

v2
v2 v2 v2 v2 v2 v2 v2

v2

v1

CANARY DEPLOYMENT: ROLLBACK

v1 v1
v1

v1 v1 v1 v1 v1v1 v1

v2
v2 v2

v2

Canary Deployment Controller

How do we automate the
deployment rollout?

Scripts in CI/CD tool.

EXAMPLE

kubectl apply -f deployment-canary.yaml
kubectl apply -f deployment-stable.yaml
kubectl apply -f service-canary.yaml
kubectl apply -f service-stable.yaml
kubectl apply -f ingress.yaml

EXAMPLE

kubectl apply -f deployment-canary.yaml
sleep 5m # wait for rollout to finish
check if application is healthy
curl http://metrics:9090/my-metric
proceed or rollback
if ...

kubectl apply -f deployment-stable.yaml

Can we do better?

How do we automate the
deployment rollout?

Scripts in CI/CD tool.
CRD controller?

Self-healing
Reconciliation loop will keep

retrying until reaching the
final state

Benefits of CRDs

Reusable
Building block that can be
used together with other

Kubernetes resources

Declarative
Describes the desired state,

not the steps to reach it

Pod

CANARY DEPLOYMENT

Deployment ReplicaSet Pod

PodReplicaSet PodDeployment

“canary”

version 1

version 2

“stable”

Ingress

Service

Service

90%

10%

“stable”

“canary”

Pod

CANARY DEPLOYMENT

Deployment ReplicaSet Pod

PodReplicaSet PodDeployment

“canary”

version 1

version 2

“stable”

Ingress

Service

Service

90%

10%

“stable”

“canary”

CANARY DEPLOYMENT

Deployment

Deployment

“canary”

version 1

version 2

“stable”

Ingress

Service

Service

90%

10%

“stable”

“canary”

CANARY DEPLOYMENT

Deployment

Deployment

“canary”

version 1

version 2

“stable”

Ingress

Service

Service

90%

10%

CanaryDeployment

“stable”

“canary”

CANARY DEPLOYMENT

Ingress

Service

Service

90%

10%

CanaryDeployment

“stable”

“canary”

DECL ARATIVE CONTINUOUS DEPLOYMENT

kubectl apply -f canarydeployment.yaml
kubectl apply -f service-canary.yaml
kubectl apply -f service-stable.yaml
kubectl apply -f ingress.yaml

How will CanaryDeployment
controller detect a bad
release?

Metrics.

Kubernetes Metrics APIs

Horizontal Pod Autoscaler is the primary
consumer of Kubernetes Metrics APIs at the
moment.

HORIZONTAL POD AUTOSCALER (HPA)

HPA CONTROLLER

Deployment HPA Controller

Resource Metrics API

External Metrics API

Custom Metrics API

CANARY DEPLOYMENT CONTROLLER

Deployment

Deployment

“stable”

“canary”

version 1

version 2

Canary Deployment
Controller

Resource Metrics API

External Metrics API

Custom Metrics API

RESOURCE METRICS API

Metrics for Pods and Nodes
• CPU
• Memory

CUSTOM METRICS API

Arbitrary metrics for any Kubernetes resource
• Pod
• Service
• Ingress

Stackdriver (GCP)
https://cloud.google.com/monitoring/custom-metrics/

CUSTOM METRICS API ADAPTERS

Azure Kubernetes Metrics Adapter
https://github.com/Azure/azure-k8s-metrics-adapter

Prometheus Adapter
https://github.com/DirectXMan12/k8s-prometheus-adapter

Datadog Cluster Agent
https://github.com/DataDog/datadog-agent/blob/master/docs/cluster-agent/CUSTOM_METRICS_SERVER.md

Custom Metrics Adapter Server Boilerplate
https://github.com/kubernetes-incubator/custom-metrics-apiserver

EXTERNAL METRICS API

Arbitrary metrics from outside of Kubernetes
cluster
• Amazon SQS queue size (CloudWatch)
• Google Cloud Pub/Sub undelivered

messages (Stackdriver)

CanaryDeployment CRD

DEPLOYMENT

apiVersion: apps/v1
kind: Deployment
metadata:
 name: foo
spec:
 replicas: 5
 selector: ... # Pod selector
 template: ... # Pod template

CANARY DEPLOYMENT

apiVersion: kanarini.nilebox.github.com/v1alpha1
kind: CanaryDeployment
metadata:
 name: foo
spec:
 selector: ... # Pod selector
 template: ... # Pod template
 tracks:
 canary: ... # "canary" track settings
 stable: ... # "stable" track settings

CANARY DEPLOYMENT

apiVersion: kanarini.nilebox.github.com/v1alpha1
kind: CanaryDeployment
metadata:
 name: foo
spec:
 selector: ... # Pod selector
 template: ... # Pod template
 tracks:
 canary: ... # "canary" track settings
 stable: ... # "stable" track settings

CANARY DEPLOYMENT

apiVersion: kanarini.nilebox.github.com/v1alpha1
kind: CanaryDeployment
metadata:
 name: foo
spec:
 selector: ... # Pod selector
 template: ... # Pod template
 tracks:
 canary: ... # "canary" track settings
 stable: ... # "stable" track settings

CANARY DEPLOYMENT

tracks:
 canary:
 replicas: 1
 labels:
 track: canary
 metricsCheckDelaySeconds: 120
 metrics: ... # List of metrics to check against
 stable:
 replicas: 5
 labels:
 track: stable

CANARY DEPLOYMENT

metricsCheckDelaySeconds: 120
metrics:
- type: Object
 object:
 describedObject:
 kind: Service
 name: "foo-canary"
 metric:
 name: "request_failure_rate:1m"
 target:
 type: Value
 value: 0.1

CANARY DEPLOYMENT

metricsCheckDelaySeconds: 120
metrics:
- type: Object
 object:
 describedObject:
 kind: Service
 name: "foo-canary"
 metric:
 name: "request_failure_rate:1m"
 target:
 type: Value
 value: 0.1

CANARY DEPLOYMENT

metricsCheckDelaySeconds: 120
metrics:
- type: Object
 object:
 describedObject:
 kind: Service
 name: "foo-canary"
 metric:
 name: "request_failure_rate:1m"
 target:
 type: Value
 value: 0.1

CANARY DEPLOYMENT

metricsCheckDelaySeconds: 120
metrics:
- type: Object
 object:
 describedObject:
 kind: Service
 name: "foo-canary"
 metric:
 name: "request_failure_rate:1m"
 target:
 type: Value
 value: 0.1

Demo
Kanarini CRD Controller

EXAMPLE

Deployment

Deployment

“stable”

“canary”

version 1

version 2

Canary Deployment
Controller

Prometheus

k8s Custom Metrics API

Prometheus Adapter

EXAMPLE

Service

“stable”

“canary”

Service

Prometheus

Prometheus Adapter

Grafana

Demo script is available at
https://github.com/nilebox/kanarini

Prometheus Adapter for Custom Metrics API
https://github.com/DirectXMan12/k8s-prometheus-adapter

LINKS

Prometheus Operator Quickstart
https://github.com/coreos/prometheus-operator/tree/master/contrib/kube-prometheus

Kanarini (CanaryDeployment CRD Controller)
https://github.com/nilebox/kanarini

Heptio Contour (Ingress Controller)
https://github.com/heptio/contour

Key takeaways for CRDs

Use abstractions
Generic APIs are reusable.

Use the power of open source
Read existing code and share your own code.

Reuse existing resources
No need to reinvent the wheel.

Keep it simple
Solve a minimal subset of a problem at once.

N A I L I S L A M OV | S E N I O R D E V E L O P E R | @ N I L E B O X

Thank you!

