
Building container images on
your cluster with Knative Build

Gareth Rushgrove

@garethr
Docker

This talk

- Why build on your cluster?

- The power of Custom Resources

- Knative Build

- Higher-level interfaces

- The future

What will we cover in this session

Why build on your cluster?

CI systems are production too
A compromise of your build infrastructure is BAD

Why maintain separate build
machines?
Less variation makes for lower operations overhead

Build is a scheduling problem
And Kubernetes is a pretty handy scheduler

The power of Custom
Resources

The importance of extensions

- Features that not everyone needs can still run on Kubernetes

- Not everything needs to be in the core API

- Adoption of extensions will help Kubernetes stand the test of time

Solving specific problems as well as general ones

Knative Build

Knative Build is a CRD which adds
primitives to Kubernetes for modelling
the software build process

Installing Knative Build
$ kubectl apply -f https://storage.googleapis.com/knative-releases/build/latest/release.yaml
namespace "knative-build" created
clusterrole.rbac.authorization.k8s.io "knative-build-admin" created
serviceaccount "build-controller" created
clusterrolebinding.rbac.authorization.k8s.io "build-controller-admin" created
customresourcedefinition.apiextensions.k8s.io "builds.build.knative.dev" created
customresourcedefinition.apiextensions.k8s.io "buildtemplates.build.knative.dev" created
customresourcedefinition.apiextensions.k8s.io "clusterbuildtemplates.build.knative.dev" created
customresourcedefinition.apiextensions.k8s.io "images.caching.internal.knative.dev" created
service "build-controller" created
service "build-webhook" created
configmap "config-logging" created
deployment.apps "build-controller" created
deployment.apps "build-webhook" created

What did we just install?
$ kubectl get pods --namespace knative-build
NAME READY STATUS RESTARTS AGE
pod/build-controller-5bf486fb95-dm446 1/1 Running 0 2m
pod/build-webhook-7b8f64b77c-k7k5j 1/1 Running 0 2m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/build-controller ClusterIP 10.96.253.190 <none> 9090/TCP 2m
service/build-webhook ClusterIP 10.105.50.131 <none> 443/TCP 2m

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deployment.apps/build-controller 1 1 1 1 2m
deployment.apps/build-webhook 1 1 1 1 2m

NAME DESIRED CURRENT READY AGE
replicaset.apps/build-controller-5bf486fb95 1 1 1 2m
replicaset.apps/build-webhook-7b8f64b77c 1 1 1 2m

What makes up Knative Build

- A Build can include multiple steps where each step specifies a Builder.

- A Builder is a type of container image that you create to accomplish any
task, whether that's a single step in a process, or the whole process itself.

- A BuildTemplate can be used to defined reusable templates.

- Authenticate with ServiceAccount using Kubernetes Secrets.

What are the new API primitives?

Warning
Knative Build is for tool builders

Hello Build
apiVersion: build.knative.dev/v1alpha1
kind: Build
metadata:
 name: date
spec:
 steps:
 - name: date
 image: debian:stable-slim
 args: ['/bin/date']

Thanks @sebgoa

Running the build
$ kubectl apply -f date.yaml
build.build.knative.dev "date" created

$ kubectl get build
NAME AGE
date 9s

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
date-pod-c9b010 0/1 Init:1/2 0 41s

$ kubectl logs date-pod-c9b010
Build successful

Existing build templates

- Bazel

- Buildah

- Buildkit

- Buildpacks

- Jib

- Kaniko

Mainly generic build tool templates, but lots of potential

Imagine higher-level templates for...

Installing build templates
$ kubectl apply -f
https://raw.githubusercontent.com/knative/build-templates/master/kaniko/kaniko.yaml
buildtemplate.build.knative.dev "kaniko" created

$ kubectl get buildtemplates
NAME AGE
kaniko 2m

Parameters
apiVersion: build.knative.dev/v1alpha1
kind: BuildTemplate
metadata:
 name: kaniko
spec:
 parameters:
 - name: IMAGE
 description: The name of the image to push
 - name: DOCKERFILE
 description: Path to the Dockerfile to build.
 default: /workspace/Dockerfile
 steps:
 - name: build-and-push
 image: gcr.io/kaniko-project/executor
 args:
 - --dockerfile=${DOCKERFILE}
 - --destination=${IMAGE}

Steps
apiVersion: build.knative.dev/v1alpha1
kind: BuildTemplate
metadata:
 name: kaniko
spec:
 parameters:
 - name: IMAGE
 description: The name of the image to push
 - name: DOCKERFILE
 description: Path to the Dockerfile to build.
 default: /workspace/Dockerfile
 steps:
 - name: build-and-push
 image: gcr.io/kaniko-project/executor
 args:
 - --dockerfile=${DOCKERFILE}
 - --destination=${IMAGE}

Describing a build
apiVersion: build.knative.dev/v1alpha1
kind: Build
metadata:
 name: kubeval-build
spec:
 source:
 git:
 url: https://github.com/garethr/kubeval.git
 revision: master
 template:
 name: kaniko
 arguments:
 - name: IMAGE
 value: garethr/kubeval

Running a build
$ kubectl apply -f kubeval.yaml
build.build.knative.dev "kubeval-build" created

$ kubectl get build kubeval-build -o yaml -w
grab the pod identifier

$ kubectl logs -f kubeval-build-pod-8fd6e4 -c build-step-build-and-push
INFO[0000] Downloading base image golang:1.8-alpine
2018/12/09 16:50:14 No matching credentials were found, falling back on anonymous
INFO[0002] Executing 0 build triggers
INFO[0002] Unpacking rootfs as cmd RUN apk --no-cache add make git requires it.
INFO[0137] Taking snapshot of full filesystem...
INFO[0138] Skipping paths under /builder/home, as it is a whitelisted directory
INFO[0138] Skipping paths under /dev, as it is a whitelisted directory
INFO[0138] Skipping paths under /kaniko, as it is a whitelisted directory
INFO[0138] Skipping paths under /proc, as it is a whitelisted directory
INFO[0138] Skipping paths under /sys, as it is a whitelisted directory
INFO[0138] Skipping paths under /var/run, as it is a whitelisted directory

Higher-level interfaces

Remember
Knative Build is for tool builders

The Kubernetes community is an
interesting mix of systems engineers
and end users
This is both a strength and a weakness

If Knative is for tool builders, what
about end users?
The pros and cons of low-level APIs

Experimenting with template UI
$ knt inspect kaniko
kaniko
https://raw.githubusercontent.com/knative/build-templates/master/kaniko/kaniko.yaml

Parameters (2) Description Default
---------------- -------------------------------- ---------------------
IMAGE The name of the image to push
DOCKERFILE Path to the Dockerfile to build. /workspace/Dockerfile

Steps (1) Image Command Args
-------------- ------------------------------ --------- --------------------------
build-and-push gcr.io/kaniko-project/executor --dockerfile=${DOCKERFILE}
 --destination=${IMAGE}

Examples with TriggerMesh tm
$ tm deploy build kubeval --source https://github.com/garethr/kubeval.git \
 --buildtemplate docker --args IMAGE=garethr/kubeval

$ tm get build kubeval
"stepStates": [
 {
 "terminated": {
 "exitCode": 0,
 "reason": "Completed",
 "startedAt": "2018-12-12T01:42:48Z",
 "finishedAt": "2018-12-12T01:46:41Z",
 "containerID": "docker://45913da527d4ee1160d9f0cce0119ec4ddcd920470a086beae7b4a6170f850bb"
 }
 }
],
"stepsCompleted": [
 "build-step-build"
],

Dockerfile to Knative Build
FROM test-base AS Test
RUN pytest --black

FROM test-base AS Check
RUN safety check

FROM app AS Security
ARG MICROSCANNER
RUN wget -O /microscanner https://get.aquasec.com/microscanner && chmod +x /microscanner
RUN /microscanner $MICROSCANNER --full-output

FROM release
CMD ["gunicorn", "-b", ":5000", "app:app"]

Generate steps from Dockerfile stages
steps:
 - name: test
 image: 'docker:18.09'
 args: ['build', '--target', 'test', '-t', "${IMAGE}:test", '.']
 - name: check
 image: 'docker:18.09'
 args: ['build', '--target', 'check', '-t', "${IMAGE}:check", '.']
 - name: security
 image: 'docker:18.09'
 args: ['build', '--target', 'security', '-t', "${IMAGE}:check", '.']
 - name: build
 image: 'docker:18.09'
 args: ['build', '-t', "${IMAGE}", '.']

Demo

The future

Other things that might happen

- A unified backend for different CI systems on Kubernetes?

- Custom scheduling algorithms for build?

- Decouple description from consumption of build information?

- Convertors for popular formats?

- Opinionated per-language/framework builders, including full pipelines?

Commence speculation

Conclusion

Conclusions

- Knative Build is for tool builder
But if you’re building CI and building tooling then you should join the
conversation

- Knative Build needs folks experimenting with UI
Low level bits are important, but not as important as end user solutions

- Custom Resources in Kubernetes are great
Expect further commoditization of parts of the software delivery toolchain

If all you remember is...

Questions?

