
Big Data Operations Using
Kubernetes and Local
Storage
Dan Norris
Senior Cloud Native Engineer @NetApp
@protochron

Agenda
● Background
● Cassandra
● Local Storage
● Cassandra + K8S
● Operations

Background

What to get out of this talk

● A high-level description to running Cassandra on
Kubernetes

● Example of operations the setup allows you to encode

Operations

● Encode common operations using Kubernetes building
blocks
○ StatefulSets
○ PersistentVolumes
○ Jobs

Data Model and Replication

● Eventually consistent by design (fault tolerant)
● Replication is configurable per Datacenter/Region

○ Ex. 2 copies in us-east-1 and 3 copies in us-west-2
● Write/read consistency is tunable

○ Quorum, Local Quorum, One, etc.

Writing Data

Problems

● Difficult to operate
● Built for a pre-container world

○ Many commands to run manually
○ Nodes are discovered by IP

■ No ip:port pairing like etcd
● Requires in-depth knowledge for tuning

Local Storage

What is Local Storage

● Local PersistentVolumes
○ Beta in 1.12

● Expose directories on nodes as PersistentVolumes
● Better abstraction than hostPath

○ Let scheduler worry about locality
○ Hide local paths from pod

Why Use Local Storage?

● Bare metal
● Different types of disks in different nodes
● May have custom hardware or technology in the mix
● Network storage may not be an option

Before I go any
further

Local storage makes
your nodes snowflakes

Snowflakes

● Something to avoid
● Goes against Kubernetes view of running applications

○ Data and node locality start to matter

You should use
network storage
if possible!

Using Local
Storage

StorageClass

An empty provisioner indicates
Local Storage

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local-cassandra
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer
Supported policies: Delete, Retain
reclaimPolicy: Delete

StorageClass

Prevent volume binding until
pods request it

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local-cassandra
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer
Supported policies: Delete, Retain
reclaimPolicy: Delete

apiVersion: v1
kind: PersistentVolume
metadata:
 name: example-pv
spec:
 capacity:
 storage: 100Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-cassandra
 local:
 path: /opt/local-storage/cassandra
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - example-node

Example Local
Persistent Volume

apiVersion: v1
kind: PersistentVolume
metadata:
 name: example-pv
spec:
 capacity:
 storage: 100Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-cassandra
 local:
 path: /opt/local-storage/cassandra
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - example-node

Example Local
Persistent Volume

apiVersion: v1
kind: PersistentVolume
metadata:
 name: example-pv
spec:
 capacity:
 storage: 100Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-cassandra
 local:
 path: /opt/local-storage/cassandra
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - example-node

Example Local
Persistent Volume

Local Storage Node Affinity

● Uses NodeAffinity to bind pods to a node
● Forces Kubernetes to only schedule to that node
● You can also use anti-affinity on your pods

○ Ex. prevent MySQL and Cassandra from running on the same node

Example Claim

Typically consume Local Storage
using a PersistentVolumeClaim

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: example-cassandra-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Gi
 storageClassName: local-cassandra

External Volume Provisioner

● DaemonSet to create PersistentStorage volumes
from directories/mount paths on a node

● https://github.com/kubernetes-incubator/external-st
orage/tree/master/local-volume

● Map StorageClasses to local directories and
provide PersistentVolumes

https://github.com/kubernetes-incubator/external-storage/tree/master/local-volume
https://github.com/kubernetes-incubator/external-storage/tree/master/local-volume

Building Blocks

2 stateful sets for
Cassandra

● Seeds
● Nodes

(+ corresponding services)
StatefulSets

StatefulSets

Stateful Sets

● Two stateful sets allow you to stage updates to nodes
first and then seeds

● Can sync seed IPs as they change
○ Cassandra does care about seed IP addresses

Building Blocks
● Allocated on each

node

Local Storage

Local Storage

● Prep nodes individually
● External volume

provisoner expects
mounts

sudo mkdir -p /opt/cassandra && \
sudo mkdir -p
/opt/local-storage/cassandra && \
sudo mount --bind /opt/cassandra
/opt/local-storage/cassandra

Configure external
volume
provisioner

apiVersion: v1
kind: ConfigMap
metadata:

name: local-provisioner-config
namespace: default
data:
 storageClassMap: |
 local-cassandra:

 hostDir: /opt/local-storage/cassandra
 mountDir: /opt/local-storage/cassandra
 blockCleanerCommand:
 - "/scripts/shred.sh"

- "2"
 volumeMode: Filesystem
 fsType: ext4

Configure external
volume
provisioner

apiVersion: v1
kind: ConfigMap
metadata:

name: local-provisioner-config
namespace: default
data:
 storageClassMap: |
 local-cassandra:

 hostDir: /opt/local-storage/cassandra
 mountDir: /opt/local-storage/cassandra
 blockCleanerCommand:
 - "/scripts/shred.sh"

- "2"
 volumeMode: Filesystem
 fsType: ext4

Configure external
volume
provisioner

apiVersion: v1
kind: ConfigMap
metadata:

name: local-provisioner-config
namespace: default
data:
 storageClassMap: |
 local-cassandra:

 hostDir: /opt/local-storage/cassandra
 mountDir: /opt/local-storage/cassandra
 blockCleanerCommand:
 - "/scripts/shred.sh"

- "2"
 volumeMode: Filesystem
 fsType: ext4

Configure external
volume
provisioner

apiVersion: v1
kind: ConfigMap
metadata:

name: local-provisioner-config
namespace: default
data:
 storageClassMap: |
 local-cassandra:

 hostDir: /opt/local-storage/cassandra
 mountDir: /opt/local-storage/cassandra
 blockCleanerCommand:
 - "/scripts/shred.sh"

- "2"
 volumeMode: Filesystem
 fsType: ext4

Building Blocks
● cassandra.yaml
● jvm.options
● + any other config files

you needConfigMap

Building Blocks
Secret

● TLS certs for each of
the pods

Pod Anatomy

● Init Containers
○ sysctl
○ TLS Keystore

init
● Containers

○ Cassandra
○ JMX Exporter
○ Backup Sidecar

Pod Anatomy

Cassandra Cluster in Two Regions

Operations

Scaling + Updates

● Increase the replicas in the StatefulSets
● Stage updates using partitions

Use Jobs for automation

● Replace config management with Kubernetes jobs

Backups

Syncing seeds

● Clusters start with a predefined list of seed nodes to
contact to learn the topology of the cluster

● Pod restarts change the list
● Solution: use a job
● Dynamic reloading without restarts is coming in

Cassandra 4.0

https://issues.apache.org/jira/browse/CASSANDRA-14190

Syncing Seeds

Thanks!
(also, we’re hiring -- drop by the NetApp booth for more

info!)

