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About me

● 2012: Joined GitLab as Ruby on Rails developer

● 2013: GitLab.com deployments and feature development

● 2014: Responsible for software packaging 

● 2015: Technical lead of the Build team

● 2017: Engineering Manager of the Distribution team

● 2018: Additionally leading Delivery team

Twitter: @maxlazio

GitLab.com: @marin

LinkedIn: www.linkedin.com/in/marin-jankovski

http://www.linkedin.com/in/marin-jankovski
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Outline

1. GitLab intro

2. Application architecture

a. Requirements for Cloud Native architecture

3. Application rewrite

a. Dealing with stateful application

b. Choosing the right solution

4. Zero downtime upgrades

a. Existing process

b. Creating the operator

5. What we learned
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GitLab is a single application for the entire DevOps lifecycle

Since 2016 
GitLab added:

Since 2011 
GitLab added:

Since 2011 
GitLab added:

Since 2012 
GitLab added:

Since 2016 
GitLab added:

Since 2016 
GitLab added:

Since 2018 
GitLab added:

Since 2016 
GitLab added:

Since 2017 
GitLab added:
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Self-Managed and GitLab.com

GitLab Self-Managed GitLab.com
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GitLab Application Architecture

GitLab 
WorkhorseGitLab Shell

Unicorn
(GitLab 
Rails)

GitalyRedis

Redis
Sidekiq
(GitLab 
Rails)

PostgreSQL

SSH

NGINX

HTTP
HTTPS

GitLab Pages

TCP 22

TCP 8090

TCP 80, 443

All connections use 
Unix sockets unless 
noted otherwise.

TCP 8080
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Requirements

● Cloud Native term

○ Definition in https://github.com/cncf/toc/blob/master/DEFINITION.md 

● We required a bit more:

○ Less complex vertical and horizontal scaling

○ Engineering velocity unchanged

○ Cloud platform agnostic

○ GitLab.com and self-managed

https://github.com/cncf/toc/blob/master/DEFINITION.md
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Examples

● Less complex scaling + engineering velocity => Rewriting the application

● Cloud platform agnostic + suitable for self-managed and SaaS => Zero downtime 

upgrades 
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Serving content to users

● Unicorn

○ Git operations via HTTP(S)

● User uploads + LFS files + CI Artifacts => GitLab Workhorse

● Shared storage between the two components

Unicorn NGINX

Storage

Actor Workhorse NGINX

Storage

ActorUnicorn
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One process per container

● Horizontal scaling is much simpler

● Image reuse

● Upgrading/patching/rollback application is much simpler as you need to roll one 

component

● Concern is limited to one process thus positively affecting security
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Choose your destiny

1. Completely separate workhorse and unicorn and put them in their own pods

2. Separate them into their own images but let them share the pod

3. Have the two services in the same image

Unicorn Workhorse

Unicorn Workhorse

- name: shared-upload-directory
mountPath: 
/srv/gitlab/public/uploads/tmp
readOnly: false
- name: shared-artifact-directory
mountPath: /srv/gitlab/shared
readOnly: false

Unicorn
+

Workhorse
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Choose your destiny

● Complete separation

○ Pro: Right way to do it

○ Con: Possible major application functionality disruption

○ Con: Not clear how much time it would take

● Sharing pod resources

○ Pro: Requires minimal immediate application rewrite 

○ Con: Still requires shared storage

● All in one image

○ Pro: Confirmed to be working correctly

○ Pro: Requires only placing the components in one image

○ Con: Still requires shared storage 
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Current process

● Roll out new versions of components without touching existing ones

● Run online database migrations 

● Roll down Gitaly service and use new version (if the version changed)

● Restart other services 

● Run migrations that can be completed in the background

● Restart 2 services that could be affected by the latest set of migrations
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Kubernetes rolling updates

● Stop routing connections to terminating pods 

● Send TERM signal to each container in the pod

● Wait for terminationGracePeriodSeconds
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Kubernetes rolling updates 

● Challenge 1: Ensuring graceful termination

○ What should terminationGracePeriodSeconds value be?

● Challenge 2: The rollout order?

○ Gitaly first

○ Database migrations
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Helm

● “Helm Charts helps you define, install, and upgrade even the most complex Kubernetes 

application.” (source: helm.sh)

● $ helm install 

● Challenge 1: Ensuring graceful termination 

○ No special functionality to ensure this
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Helm

●  Challenge 2: the rollout order?

○ Gitaly

○ Database migrations

■ Job resource created after deployment
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Write our own operator?

● “An Operator is an application-specific controller that extends the Kubernetes API to 

create, configure, and manage instances of complex stateful applications on behalf of a 

Kubernetes user.” (source: https://coreos.com/blog/introducing-operators.html)

● We can use it everywhere!

○ Automated backup/restore would fit great in the operator concept! 

○ Database initialisation and database migrations?

○ Predictable upgrade process?! 

https://coreos.com/blog/introducing-operators.html
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Attempt 1: CustomController

● Initial example from https://github.com/trstringer/k8s-controller-core-resource 

● Watch for changes in deployment

● Roll out in order

● Problems

○ Tracking all events? 

○ Rolling pod restart? 

○ Handing ConfigMap?

○ Rolling secrets?

https://github.com/trstringer/k8s-controller-core-resource


22@maxlazio  |  @GitLab

Attempt 2: Use an existing tool

● Operator-sdk: https://github.com/operator-framework/operator-sdk  

● Kubebuilder: https://github.com/kubernetes-sigs/kubebuilder 

○ Canonical project structure

○ Generating code to register custom types with controller manager

○ Generating CRD definitions

○ Generating RBAC rules for the controller

https://github.com/operator-framework/operator-sdk
https://github.com/kubernetes-sigs/kubebuilder
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Helm + Operator

● $ helm install

○ Operator is installed using a Helm hook

○ Operator now controls the rollout process

● $ helm upgrade

○ Helm updates all versions at the same time

○ Operator can’t control the process

● Solution - share the responsibility:

○ Helm installs the new resources

○ Operator pauses the workloads to prevent Kubernetes from rolling resources

○ Operator controls the rest of the rollout
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Helm + Operator

● Helm Chart deployment template:
spec:
  {{- if .Values.global.operator.enabled }}
  paused: true
  {{- end }} 

● Operator StatefulSet rolling strategy:
if pause {
   statefulSet.Spec.UpdateStrategy.RollingUpdate.Partition = 
statefulSet.Spec.Replicas
} else {
   statefulSet.Spec.UpdateStrategy.RollingUpdate.Partition = 
int32Pointer(0)
}
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Helm + Operator

● Operator Job rolling strategy

if pause {
parallelism = int32Pointer(0)

}

● Operator DaemonSet rolling strategy

if pause {
maxUnavailable = &intstr.IntOrString{IntVal: 0}

}



26@maxlazio  |  @GitLab

Final hurdle

$ helm upgrade --install <release-name> . 

 --set global.operator.enabled=true 

 --set global.operator.bootstrap=true

$ helm upgrade <release-name> . 

 --set global.operator.enabled=true 

 --set global.operator.bootstrap=false
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What we learned
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Lesson 1

● Kubernetes moves (too) fast
● Kubernetes is very powerful
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Lesson 2 

● Great for organising configuration

● Working with Tiller is challenging

● Error handling  doesn’t appear to be always reliable

○ Error: Upgrade failed: “gitlab” has no deployed releases”
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Lesson 3

● Slitting the application

● Hiring experts at the right time

● Starting early 
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Thank you!


