
1@maxlazio | @GitLab

Marin Jankovski
Engineering Manager, Distribution and
Delivery,
GitLab

Becoming cloud native without starting from scratch

2@maxlazio | @GitLab

About me

● 2012: Joined GitLab as Ruby on Rails developer

● 2013: GitLab.com deployments and feature development

● 2014: Responsible for software packaging

● 2015: Technical lead of the Build team

● 2017: Engineering Manager of the Distribution team

● 2018: Additionally leading Delivery team

Twitter: @maxlazio

GitLab.com: @marin

LinkedIn: www.linkedin.com/in/marin-jankovski

http://www.linkedin.com/in/marin-jankovski

3@maxlazio | @GitLab

Outline

1. GitLab intro

2. Application architecture

a. Requirements for Cloud Native architecture

3. Application rewrite

a. Dealing with stateful application

b. Choosing the right solution

4. Zero downtime upgrades

a. Existing process

b. Creating the operator

5. What we learned

4@maxlazio | @GitLab

GitLab is a single application for the entire DevOps lifecycle

Since 2016
GitLab added:

Since 2011
GitLab added:

Since 2011
GitLab added:

Since 2012
GitLab added:

Since 2016
GitLab added:

Since 2016
GitLab added:

Since 2018
GitLab added:

Since 2016
GitLab added:

Since 2017
GitLab added:

Cycle Analytics

DevOps Score

Audit
Management

Authentication
and

Authorization

Kanban Boards

Project
Management

Agile Portfolio
Management

Service Desk

Source Code
Management

Code Review

Wiki

Snippets

Web IDE

Continuous
Integration (CI)

Code Quality

Performance
Testing

Container
Registry

Maven
Repository

Continuous
Delivery (CD)

Release
Orchestration

Pages

Review Apps

Incremental
Rollout

Feature Flags

Auto DevOps

Kubernetes
Configuration

ChatOps

Metrics

Logging

Cluster
Monitoring

SAST

DAST

Dependency
Scanning

Container
Scanning

License
Management

5@maxlazio | @GitLab

Self-Managed and GitLab.com

GitLab Self-Managed GitLab.com

6@maxlazio | @GitLab

GitLab Application Architecture

GitLab
WorkhorseGitLab Shell

Unicorn
(GitLab
Rails)

GitalyRedis

Redis
Sidekiq
(GitLab
Rails)

PostgreSQL

SSH

NGINX

HTTP
HTTPS

GitLab Pages

TCP 22

TCP 8090

TCP 80, 443

All connections use
Unix sockets unless
noted otherwise.

TCP 8080

7@maxlazio | @GitLab

Requirements

● Cloud Native term

○ Definition in https://github.com/cncf/toc/blob/master/DEFINITION.md

● We required a bit more:

○ Less complex vertical and horizontal scaling

○ Engineering velocity unchanged

○ Cloud platform agnostic

○ GitLab.com and self-managed

https://github.com/cncf/toc/blob/master/DEFINITION.md

8@maxlazio | @GitLab

Examples

● Less complex scaling + engineering velocity => Rewriting the application

● Cloud platform agnostic + suitable for self-managed and SaaS => Zero downtime

upgrades

10@maxlazio | @GitLab

Serving content to users

● Unicorn

○ Git operations via HTTP(S)

● User uploads + LFS files + CI Artifacts => GitLab Workhorse

● Shared storage between the two components

Unicorn NGINX

Storage

Actor Workhorse NGINX

Storage

ActorUnicorn

11@maxlazio | @GitLab

One process per container

● Horizontal scaling is much simpler

● Image reuse

● Upgrading/patching/rollback application is much simpler as you need to roll one

component

● Concern is limited to one process thus positively affecting security

12@maxlazio | @GitLab

Choose your destiny

1. Completely separate workhorse and unicorn and put them in their own pods

2. Separate them into their own images but let them share the pod

3. Have the two services in the same image

Unicorn Workhorse

Unicorn Workhorse

- name: shared-upload-directory
mountPath:
/srv/gitlab/public/uploads/tmp
readOnly: false
- name: shared-artifact-directory
mountPath: /srv/gitlab/shared
readOnly: false

Unicorn
+

Workhorse

13@maxlazio | @GitLab

Choose your destiny

● Complete separation

○ Pro: Right way to do it

○ Con: Possible major application functionality disruption

○ Con: Not clear how much time it would take

● Sharing pod resources

○ Pro: Requires minimal immediate application rewrite

○ Con: Still requires shared storage

● All in one image

○ Pro: Confirmed to be working correctly

○ Pro: Requires only placing the components in one image

○ Con: Still requires shared storage

15@maxlazio | @GitLab

Current process

● Roll out new versions of components without touching existing ones

● Run online database migrations

● Roll down Gitaly service and use new version (if the version changed)

● Restart other services

● Run migrations that can be completed in the background

● Restart 2 services that could be affected by the latest set of migrations

16@maxlazio | @GitLab

Kubernetes rolling updates

● Stop routing connections to terminating pods

● Send TERM signal to each container in the pod

● Wait for terminationGracePeriodSeconds

17@maxlazio | @GitLab

Kubernetes rolling updates

● Challenge 1: Ensuring graceful termination

○ What should terminationGracePeriodSeconds value be?

● Challenge 2: The rollout order?

○ Gitaly first

○ Database migrations

18@maxlazio | @GitLab

Helm

● “Helm Charts helps you define, install, and upgrade even the most complex Kubernetes

application.” (source: helm.sh)

● $ helm install

● Challenge 1: Ensuring graceful termination

○ No special functionality to ensure this

19@maxlazio | @GitLab

Helm

● Challenge 2: the rollout order?

○ Gitaly

○ Database migrations

■ Job resource created after deployment

20@maxlazio | @GitLab

Write our own operator?

● “An Operator is an application-specific controller that extends the Kubernetes API to

create, configure, and manage instances of complex stateful applications on behalf of a

Kubernetes user.” (source: https://coreos.com/blog/introducing-operators.html)

● We can use it everywhere!

○ Automated backup/restore would fit great in the operator concept!

○ Database initialisation and database migrations?

○ Predictable upgrade process?!

https://coreos.com/blog/introducing-operators.html

21@maxlazio | @GitLab

Attempt 1: CustomController

● Initial example from https://github.com/trstringer/k8s-controller-core-resource

● Watch for changes in deployment

● Roll out in order

● Problems

○ Tracking all events?

○ Rolling pod restart?

○ Handing ConfigMap?

○ Rolling secrets?

https://github.com/trstringer/k8s-controller-core-resource

22@maxlazio | @GitLab

Attempt 2: Use an existing tool

● Operator-sdk: https://github.com/operator-framework/operator-sdk

● Kubebuilder: https://github.com/kubernetes-sigs/kubebuilder

○ Canonical project structure

○ Generating code to register custom types with controller manager

○ Generating CRD definitions

○ Generating RBAC rules for the controller

https://github.com/operator-framework/operator-sdk
https://github.com/kubernetes-sigs/kubebuilder

23@maxlazio | @GitLab

Helm + Operator

● $ helm install

○ Operator is installed using a Helm hook

○ Operator now controls the rollout process

● $ helm upgrade

○ Helm updates all versions at the same time

○ Operator can’t control the process

● Solution - share the responsibility:

○ Helm installs the new resources

○ Operator pauses the workloads to prevent Kubernetes from rolling resources

○ Operator controls the rest of the rollout

24@maxlazio | @GitLab

Helm + Operator

● Helm Chart deployment template:
spec:
 {{- if .Values.global.operator.enabled }}
 paused: true
 {{- end }}

● Operator StatefulSet rolling strategy:
if pause {
 statefulSet.Spec.UpdateStrategy.RollingUpdate.Partition =
statefulSet.Spec.Replicas
} else {
 statefulSet.Spec.UpdateStrategy.RollingUpdate.Partition =
int32Pointer(0)
}

25@maxlazio | @GitLab

Helm + Operator

● Operator Job rolling strategy

if pause {
parallelism = int32Pointer(0)

}

● Operator DaemonSet rolling strategy

if pause {
maxUnavailable = &intstr.IntOrString{IntVal: 0}

}

26@maxlazio | @GitLab

Final hurdle

$ helm upgrade --install <release-name> .

 --set global.operator.enabled=true

 --set global.operator.bootstrap=true

$ helm upgrade <release-name> .

 --set global.operator.enabled=true

 --set global.operator.bootstrap=false

27@maxlazio | @GitLab

What we learned

28@maxlazio | @GitLab

Lesson 1

● Kubernetes moves (too) fast
● Kubernetes is very powerful

29@maxlazio | @GitLab

Lesson 2

● Great for organising configuration

● Working with Tiller is challenging

● Error handling doesn’t appear to be always reliable

○ Error: Upgrade failed: “gitlab” has no deployed releases”

30@maxlazio | @GitLab

Lesson 3

● Slitting the application

● Hiring experts at the right time

● Starting early

31@maxlazio | @GitLab

Thank you!

