
Adding a New Storage 
Provider to Rook
Jared Watts
Rook Senior Maintainer
Upbound Founding Engineer

https://rook.io/
https://github.com/rook/rook

https://rook.io/
https://github.com/rook/rook


● Cloud-Native Storage Orchestrator
● Extends Kubernetes with custom types and controllers
● Automates deployment, bootstrapping, configuration, 

provisioning, scaling, upgrading, migration, disaster recovery, 
monitoring, and resource management

● Framework for many storage providers and solutions
● Open Source (Apache 2.0)
● Hosted by the Cloud-Native Computing Foundation (CNCF)

What is Rook?



● Reliance on external storage
○ Requires these services to be accessible
○ Deployment burden

● Reliance on cloud provider managed services
○ Vendor lock-in

● Day 2 operations - who is managing the storage?

Storage Challenges



● Deploy storage systems INTO the cluster
● Harness the power of Kubernetes
● Automated management by smart software
● Portable abstractions for all our storage needs

Possible Solutions



Power of Portability

● Power of choice - cost, features, availability, compliance, etc.
● Take our data wherever Kubernetes goes
● Pod and Volume abstractions enables portability

○ What about databases, buckets, message queues, data 
pipelines, etc.?

● Crossplane - open source multicloud control plane
○ https://crossplane.io/

https://crossplane.io/


● Teaches Kubernetes about new first-class objects
● Custom Resource Definition (CRDs) are arbitrary types that 

extend the Kubernetes API
○ look just like any other built-in object (e.g. Pod)
○ Enabled native kubectl experience

● A means for user to describe their desired state

Custom Resource Definitions (CRDs)



● Implements the Operator Pattern for storage solutions
● User defines desired state for the storage cluster
● The Operator runs reconciliation loops

○ Observe - Watches for changes in desired state and cluster
○ Analyze - Determine differences between desired and 

actual
○ Act - Applies changes to the cluster to drive it towards 

desired

Rook Operators



Operator Frameworks

Current: Register CRDs, watch events and invoke handler functions

● Rook operator-kit: https://github.com/rook/operator-kit

Future: Auto-generate APIs, CRDs, controllers, reconciliation, 
boilerplate code, unit tests, deployment, etc.

● Operator SDK: 
https://github.com/operator-framework/operator-sdk

● Kubebuilder: https://github.com/kubernetes-sigs/kubebuilder

https://github.com/rook/operator-kit
https://github.com/operator-framework/operator-sdk
https://github.com/kubernetes-sigs/kubebuilder


Rook Framework for Storage Solutions

● Rook is more than just a collection of Operators and CRDs
● Framework for storage providers to integrate their solutions 

into cloud-native environments
○ Storage resource normalization
○ Operator patterns/plumbing
○ Common policies, specs, logic
○ Testing effort

● Ceph, CockroachDB, Minio, NFS, Cassandra, EdgeFS, and 
more...



● Rook’s framework has enabled new contributors to add new 
storage solutions - the community is growing!

● Storage teams themselves are enabled
● Yannis Zarkadas at Arrikto - amazing effort on Cassandra
● Rohan Gupta - Google Summer of Code project for NFS
● Nexenta team - EdgeFS

Community Driven Effort



Minio ObjectStore CRD



Minio ObjectStore Custom Object



Using the Object Store CRD



Revisiting the ObjectStore

● Rook knows how to work with 
common information in storage 
object specs (networking, node 
counts, etc.)

● Only the credentials are 
Minio-specific

● We can use this information to 
deploy a Minio cluster



Minio Operator

● We specify the container that 
the Minio operator will reside in

● Args are provided to inform the 
Rook binary that it needs to 
operate on Minio

● We include the CRD in the same 
file as this operator description



Minio Operator Container Image

● Contains both Minio 
server/tools and Rook 
libraries

● Optimized Docker build to 
collapse layers and minify 
image

● Base image is Alpine Linux



Minio ObjectStore Golang Types

● ObjectStoreSpec struct defines 
the config properties exposed 
to the user in object-store.yaml

● Notice the spec takes 
advantage of the common 
types/specs from the Rook 
framework



Minio Operator Watching for Events

● We create a new watcher 
to watch for add, update, 
or delete events

● Event handler functions 
are passed to the Rook 
operator-kit



Watching with Informers

● We use an Informer to 
watch for k8s events, 
which prevents excessive 
polling on the API server

● The informer keeps a 
cache of objects to limit 
GETs



ObjectStore Add Handler

● The onAdd handler 
implementation uses the 
K8s API to create services, 
stateful sets, etc.

● We programmatically 
follow the deployment 
procedure for the Minio 
cluster



ObjectStore Update Handler



Dynamic provisioning for new storage types

● Similar pattern to StorageClass and PersistentVolumeClaim
● ResourceClass - a “blueprint” created by the administrator

○ contains all environment specifics and details to create a “class” of 
storage

○ Fast, Standard, Cheap, etc.
● ResourceClaim - developer defined, simply expresses their general need 

for a given storage type
● Separation of concerns - promotes reusability and reduces complexity
● Storage is created on demand as it’s needed, no need to pre-allocate
● Enables portability and the power of choice
● Write once, run anywhere



Dynamic Provisioner - Observe



Dynamic Provisioner - Analyze



Dynamic Provisioner - Act



Demo

PostgreSQL Dynamic 
Provisioning

CockroachDB on-premises

Google CloudSQL in the cloud



What did we cover today?

● Rook is a cloud-native storage orchestrator
● Framework to create storage operators that deploy, 

configure, and manage many storage solutions in 
Kubernetes

● Dynamically provision all sorts of storage types in the cloud 
and on-premises with Crossplane & Rook

● Separation of concerns for admins and devs - promote 
reusability, reduce complexity

● Portability - power of choice



● Contribute to Rook and Crossplane
○ https://rook.io/
○ https://crossplane.io/

● Slack
○ https://slack.rook.io/
○ https://slack.crossplane.io/

● Twitter - @rook_io & @crossplane_io
● Forums - rook-dev & crossplane-dev on google groups
● Community Meetings

How to get involved?

https://rook.io/
https://crossplane.io/
https://slack.rook.io/
https://slack.crossplane.io/


Questions?
https://rook.io/

https://crossplane.io/

https://rook.io/


Thank you!
https://rook.io/

https://crossplane.io/

https://rook.io/

