
gRPC Loadbalancing on
Kubernetes

Jan Tattermusch (GitHub:@jtattermusch), Google

Why Load Balancing?

• Build scalable services
• Improve throughput, decrease latency
• Avoid overloading of a single backend
• Improved Tolerance for backend failures
• Allows updating service on the fly

LB is of key importance in microservice architecture

Concepts: L4 vs L7

Connection based (L4) vs Stream-based (L7) balancing:
• What is the granularity of picking a backend?
• L4 works fine for HTTP1.1/REST APIs
• gRPC uses HTTP/2: every RPC is a separate stream in the
same TCP/IP connection

• L7 LB needed for gRPC traffic
• Potential Problem: Kubernetes LB is only L4 (= in service

types ClusterIP and LoadBalancer)

Concepts: Client LB vs Proxy LB

Proxy LB
+ simple client, untrusted clients are fine
- higher overhead & latency

"Sidecar" deployment possible on Kubernetes
Client LB
+ low latency, low overhead, no proxy management
- only good for simple LB logic

gRPC implements RoundRobin and "grpclb" lookaside

Client Lookaside LB

• Complex logic
implemented by
Balancer

• Extensible
• Can accommodate

server load info
gRPC Client

gRPC Server

Load Balancer

gRPC Server

gRPC Server

Cluster Manager
(e.g. Istio Pilot)

Kubernetes PodKubernetes PodKubernetes Pod

Service Mesh LB

• proxy deployed as
a service side-car

• LB performed by
the proxy

• many additional
features available

Proxy

gRPC Server

Proxy

gRPC Client

Kubernetes API

gRPC Loadbalancing Options

Proxy LB
• Envoy
• nginx (full gRPC support from Mar 2018)
• proxies that support both HTTP/2 and LB should work

Proxy LB in a Service Mesh
• Envoy / Istio
• Linkerd

gRPC Loadbalancing Options

Client LB
- simple built-in RoundRobin loadbalancer (comes with gRPC)

Lookaside Client LB
- client talks to a balancer that implements simple grpclb

protocol and instructs how to balance the load
- grpclb client is built into gRPC library
- Problem: grpclb server implementation not available publicly

https://github.com/grpc/grpc/blob/master/src/proto/grpc/lb/v1/load_balancer.proto
https://github.com/grpc/grpc/blob/master/src/proto/grpc/lb/v1/load_balancer.proto

Future of gRPC Lookaside LB

• Envoy uses Universal data plane API to discover endpoints
• gRPC will implement Universal data plane API support

• API adjustments might be needed
• 2 possible deployment models

• Envoy proxy does the lookaside load balancing (AVAILABLE NOW)
• gRPC client consumes data plane API directly (as grpclb alternative)

- NOT AVAILABLE YET
• grpclb will continue to be supported

https://blog.envoyproxy.io/the-universal-data-plane-api-d15cec7a

Example: Round Robin LB

https://github.com/jtattermusch/grpc-loadbalancing-kubernetes-examples

How to do this in Kubernetes
• Use "headless" service (clusterIP: None) to expose all replicas as DNS entry
• Set loadbalancing policy in gRPC clients

new ChannelOption("grpc.lb_policy_name", "round_robin")
• Connect to the service as usual

new Channel("greeter-server.default.svc.cluster.local:8000", …)

+ Simple setup, works out of the box
- does not take server load into account
- handling "scale up" correctly requires a workaround

https://github.com/jtattermusch/grpc-loadbalancing-kubernetes-examples

Example: LB with Envoy sidecar

https://github.com/jtattermusch/grpc-loadbalancing-kubernetes-examples

Statically configured Envoy proxy
• Use "headless" service (clusterIP: None) to expose all replicas as DNS entry
• Setup Envoy proxy as a sidecar container
• Direct all client traffic to the envoy proxy
• Use Envoy's STRICT_DNS cluster type

Dynamically configured Envoy proxy
• Install istio (or other cluster manager)
• Deploy client with a sidecar using "istioctl kube-inject"
• Connect to the service as usual

new Channel("greeter-server.default.svc.cluster.local:8000", …)
• Envoy will obtain configuration from Cluster Manager (istio pilot)

https://github.com/jtattermusch/grpc-loadbalancing-kubernetes-examples

Example: LB in Service Mesh

https://github.com/jtattermusch/grpc-loadbalancing-kubernetes-examples

How to do this in Kubernetes
• Install istio
• Deploy server and client using "istioctl kube-inject"
• Use port names "grpc" or "grpc-mysuffix" for your service otherwise route rules (and load

balancing) won't work
• Connect to the service as usual

new Channel("greeter-server.default.svc.cluster.local:8000", …)

https://github.com/jtattermusch/grpc-loadbalancing-kubernetes-examples

Example: Lookaside LB

Simplified scenario with
external load balancer
• client discovers

balancer via SRV DNS
records

• balancer watches
backend list via
Kubernetes Endpoint
API.

Greeter Client

Greeter Server

Greeter Load
Balancer

Greeter Server

Greeter Server

Kubernetes API Kubernetes API
Client

Example: Lookaside LB

How to do this in Kubernetes:
• Expose a named port called "grpclb" for the balancer service

(=> publishes the necessary
_grpclb._tcp.yourservice.default.internal SRV records)

• Use a headless balancer service and headless backend
service

Implement the balancer service
• Dummy grpclb server in our example - only watches the

available backends using kubernetes API and published the
server list.

Balancing streaming RPCs

• Traditional RPCs are short-lived
• gRPC load balancing is done per-call

• Fine for single request - single response
• Potentially no balancing is happening for long-lived streaming calls.
• It is difficult to assign weights to streaming calls - we don't know how

long they are going to take
What to do
• restart streaming calls periodically
• can set MAX_CONNECTION_AGE to limit lifetime of

connections
• keep this in mind when designing APIs

What if I can only do L4 LB?

Poor man's approach to making L4 load balancing less bad for
gRPC
• Set grpc.max_connection_age_ms on your servers
• Established connections will reconnect periodically ->

connection based LB can kick in.
• Can be use with Kubernetes 'LoadBalancer' and 'ClusterIP'

services.
Reference:
https://github.com/grpc/proposal/blob/master/A9-server-side-conn-mgt.md

https://github.com/grpc/proposal/blob/master/A9-server-side-conn-mgt.md

Conclusion

gRPC office hours in CNCF booth
• Thu 11:30 - 12:30

Other gRPC talks
• "gRPC Deep Dive" - Thu 16:35

Please fill out feedback survey
https://bit.ly/2HsEMcS

https://bit.ly/2HsEMcS

Resources

Examples repository
https://github.com/jtattermusch/grpc-loadbalancing-kubernetes-examples

Overview
https://github.com/grpc/grpc/blob/master/doc/load-balancing.md
https://grpc.io/blog/loadbalancing

Other useful links
https://blog.envoyproxy.io/the-universal-data-plane-api-d15cec7a

https://www.nginx.com/blog/nginx-1-13-10-grpc/

https://github.com/jtattermusch/grpc-loadbalancing-kubernetes-examples
https://github.com/grpc/grpc/blob/master/doc/load-balancing.md
https://grpc.io/blog/loadbalancing
https://blog.envoyproxy.io/the-universal-data-plane-api-d15cec7a
https://www.nginx.com/blog/nginx-1-13-10-grpc/

