
Writing Kubernetes controllers
for CRDs

Alena Prokharchyk, Rancher Labs

whoami

Alena Prokharchyk,

Principal Software Engineer @RancherLabs

@lemonjet

alena1108

So you need a new k8s feature

Writing a custom controller is the way to go when:

• Feature is not generic enough to become a part of the k8s
platform

• You want to maintain feature development and release lifecycle

New feature implies new custom resource(s) that user can

• View
• Configure
• Monitor

And controller can operate on the custom resource to:

• Run backend logic based on resource definition
• Update object to reflect the actual state of the resource

Kubernetes Ecosystem

Is	made	of	custom	controllers

Custom Resources

• Strongly	typed	

• Top-level	support	from	API	and	kubectl	

• Ability	to	subscribe	to	resource	change	events

What makes a custom resource

• Metadata,	spec,	status	are	recommended	fields	to	
have	to	leverage	k8s	capabilities	like	Garbage	
Collection,	pre-delete	hooks,	etc	

• Status.conditions	is	advised	to	have	as	an	
alternative	to	a	single	state	field	

• The	rest	of	the	fields	are	custom,	and	solely	driven	
by	external	controller	implementation/use

Lets build…

Kubernetes clusters management tool that will let user:

• Create/view/delete Kubernetes clusters by operating on custom
resource cluster using kubectl

• Access provisioned cluster by using custom resource
kubeconfig fetched using kubectl

Things we are going to demo

• Client generation for custom resources cluster and kubeconfig

• Handling cluster create/update events by calling cluster installer
tool

• Utilize resource Conditions field to reflect cluster state

• Use Finalizer to execute pre-delete hook on cluster.remove

• Leverage k8s garbage collection using ownerReferences field on
child resource

Tools used

• K8s code-generator to create client/informers/other useful functions
for the custom resource https://github.com/kubernetes/code-generator

• RKE - open source Kubernetes installer that works everywhere
https://github.com/rancher/rke

• Core controller logic https://github.com/alena1108/kubecon2018

https://github.com/kubernetes/code-generator
https://github.com/rancher/rke
https://github.com/alena1108/kubecon2018

Demo time!

Demo reflections

Be careful with update logic

Eliminate infinite updates by either:

* comparing current spec with the previous spec
* for update that are meant to run only once, introduce Condition to
reflect whether the update happened(-ing)

K8s 1.10 offers new construct reducing update problems - Object
Status as a Custom Object: https://blog.openshift.com/kubernetes-
custom-resources-grow-up-in-v1-10/

https://blog.openshift.com/kubernetes-custom-resources-grow-up-in-v1-10/
https://blog.openshift.com/kubernetes-custom-resources-grow-up-in-v1-10/
https://blog.openshift.com/kubernetes-custom-resources-grow-up-in-v1-10/

Conditions

* Each condition should represent a certain single functionality
state. For multi functionality reflection, consider introducing more
conditions

* Avoid updating the same condition by multiple controllers.

Finalizer

Set on the object, so on its removal controller(s) get a chance to
run a custom cleanup logic

Owner reference

Nice way to delegate “child” objects cleanup to k8s Garbage
Collector

Thank you!

