
What does “production ready” really
mean for a Kubernetes cluster?

Lucas Käldström
4th of May 2018 - KubeCon Copenhagen

$ whoami
Lucas Käldström, Upper Secondary School Student,
just turned 18

CNCF Ambassador, Certified Kubernetes
Administrator and Kubernetes SIG Lead

Speaker at KubeCon in Berlin & Austin in 2017

Kubernetes approver and subproject owner, active in
the community for ~3 years

Driving luxas labs which currently performs contracting
for Weaveworks

A guy that has never attended a computing class

Agenda
1. Define the buzzwords!

a. What does “production-ready” mean to you?

b. What are the requirements for a highly available cluster?

2. What to think about when securing the cluster

a. TLS certificates for all components

b. Enable and set up RBAC (Role Based Access Control)

c. Attack vectors you might not have thought about before

Agenda
3. Make the cluster highly-available if needed

a. Do you need it?

b. How to set up a HA cluster with kubeadm

c. “Attack vectors” you might not have thought about before

4. Use the Cluster API for controlling the cluster declaratively

a. Intro to the Cluster API

b. How to set up Kubernetes using the Cluster API and upgrade/rollback

Which layer are you talking about?

Master A Master N Node 1 Node N

Kubernetes cluster

Machines

Application A Application B App C App D App EApplications

Focusing on
this layer

I. Define what “production-ready” means to you
Buzzwords all around...

“The cluster is production ready

when it is in a good enough shape

for the user to serve real-world traffic”

“Your offering is production ready when it

slightly exceeds your customer’s expectations

in a way that allows for business growth”

-- Carter Morgan, Google (@_askcarter)

https://twitter.com/_askcarter

It’s all about tradeoffs (!!)

Okay, so what does that mean
in terms of technical work items?

1. The cluster is reasonably secure

2. The cluster components are highly available enough for the user’s needs

3. All elements in the cluster are declaratively controlled

4. Changes to the cluster state can be safely applied (upgrades/rollbacks)

5. The cluster passes as many end-to-end tests as possible

Production-ready cluster?

Nodes

Master

Kubernetes’ high-level component architecture

Node 3

OS

Container
Runtime

Kubelet

Networking

Node 2

OS

Container
Runtime

Kubelet

Networking

Node 1

OS

Container
Runtime

Kubelet

Networking

API Server (REST API)
Controller Manager
(Controller Loops)

Scheduler
(Bind Pod to Node)

etcd (key-value DB, SSOT)

User

Legend:
CNI
CRI
OCI
Protobuf
gRPC
JSON

https://github.com/containernetworking/cni
https://github.com/kubernetes/community/blob/master/contributors/devel/container-runtime-interface.md
https://www.opencontainers.org/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/api-machinery/protobuf.md
https://grpc.io/
http://www.json.org/

What about “high availability”?

1. Instances (>=1) of a component can fail without causing the cluster to fail

2. Machines (>=1) in the cluster can fail without causing the cluster to fail

More about this in section III.

II. Securing Kubernetes
Things to keep in mind

1. TLS-secured communication everywhere!
a. Certificates/identities should be rotatable
b. Use a separate CA for etcd
c. Use the Certificates/CSR API, with an external key signer if possible

2. API Authentication and Authorization
a. Disable anonymous authentication and localhost:8080
b. Enforce the RBAC and Node authorizers

3. Lock down the kubelets in the cluster
a. Each kubelet should have its unique identity
b. Disable the readonly port (10255) & public (!) cAdvisor port (4194)

4. Be careful with the Dashboard and Helm
a. Don’t give them cluster-admin power, then it’s very easy to escalate privileges
b. The security of the dashboard has improved since v1.7.0

i. The dashboard now has a login screen and delegates privileges
c. Specify the exact operations tiller may perform with RBAC
d. Secure the Helm <-> Tiller communication with TLS certificates

https://github.com/kubernetes/dashboard/releases/tag/v1.7.0
http://technosophos.com/2017/11/20/securing-helm.html

5. Deny by default -- best practices security-wise
a. Deny-all with RBAC
b. Deny-all with NetworkPolicy
c. Set up a restrictive PodSecurityPolicy as the default

Setting up a dynamic TLS-secured cluster

Nodes

Master

API ServerController Manager Scheduler

CN=system:kube-controller-manager CN=system:kube-scheduler

Kubelet: node-1

HTTPS (6443) Kubelet client
O=system:masters

Self-signed HTTPS
(10250)

CN=system:node:node-1
O=system:nodes

Kubelet: node-2 (to be joined)

Self-signed HTTPS
(10250)

Bootstrap Token &
trusted CA

CN=system:node:node-2
O=system:nodes

CSR ApproverCSR Signer

Legend:
Logs / Exec calls
Normal HTTPS
POST CSR
SAR Webhook
PATCH CSRnode-1

CSR
node-2
CSR

Bootstrap
Token

CSR=Certificate Signing Request, SAR=Subject Access Review

More information about Kubernetes security

1. Use https://github.com/aquasecurity/kube-bench

2. Official docs: Best Practices for Securing a Kubernetes Cluster

3. Hacking and Hardening Kubernetes Clusters by Example [I] - Brad Geesaman

https://github.com/aquasecurity/kube-bench
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://youtu.be/vTgQLzeBfRU

III. Minimize the points of failure in the cluster

Key design takeaways for kubeadm
- kubeadm’s task is to set up a best-practice cluster for each minor version

- The user experience should be simple, and the cluster reasonably secure

- kubeadm’s scope is limited; intended to be a building block
- Only ever deals with the local filesystem and the Kubernetes API

- Agnostic to how exactly the kubelet is run

- Setting up or favoring a specific CNI network is out of scope

- Composable architecture with everything divided into phases

Audience: build-your-first-own-cluster users & higher-level tools like kops & kubicorn

What is kubeadm and why should I care?
= A tool that sets up a minimum viable, best-practice Kubernetes cluster

Master A Master N Node 1 Node N

kubeadm kubeadm kubeadm kubeadm

Cloud Provider Load Balancers Monitoring Logging

Cluster API SpecCluster API Cluster API Implementation

Addons

Kubernetes API

Bootstrapping

Machines

Infrastructure

Layer 2

Layer 3

Layer 1

HA etcd cluster

 External Load Balancer or DNS-based API server resolving

How achieve HA with kubeadm today?

Master A (kubeadm init)

API Server

Controller Manager

Scheduler

Shared certificates
etcd

etcd
etcd

Master B (kubeadm init)

API Server

Controller Manager

Scheduler

Shared certificates

Master C (kubeadm init)

API Server

Controller Manager

Scheduler

Shared certificates

Nodes (kubeadm join)

Kubelet 1
Kubelet 2

Kubelet 3
Kubelet 4

Kubelet 5

 Do-it-yourself
1. Set up HA etcd cluster
2. Copy certificates from

master A to B and C
3. Set up a loadbalancer

in front of the API servers

Is this cluster setup highly-available?

HA etcd cluster

Master A

API Server

Controller Manager

Scheduler

Shared certificates
etcd
etcd
etcd

Master B

API Server

Controller Manager

Scheduler

Shared certificates

Master C

API Server

Controller Manager

Scheduler

Shared certificates

Nodes

Kubelet 1
Kubelet 2
Kubelet 3
Kubelet 4
Kubelet 5

Master D

Loadbalancer

No

Single point of failure :(

Other things to keep in mind with a HA cluster

1. Remember to keep the kube-dns replicas >= 1, and use Pod anti-affinity

2. Many certificates need to be identical across masters
a. e.g. the ServiceAccount signing private key for the controller-manager
b. => Needs to be rotated for all instances at the same time

3. Monitoring the cluster components becomes increasingly more important
with a HA cluster that is expected to have a high SLO
a. You can for example use Prometheus and kube-state-metrics as a starting point

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://prometheus.io
https://github.com/kubernetes/kube-state-metrics

“Monitor it so you know when it fails

before your customers do”

-- Justin Santa Barbara, Google (@justinsb)

https://github.com/justinsb

IV. Declarative cluster control with the Cluster API
Manage clusters more like applications

What’s the Cluster API?
● A declarative way to create, configure, and manage a cluster

○ apiVersion: "cluster-api.k8s.io/v1alpha1"
○ kind: Cluster

● Controllers will reconcile desired vs. actual state
○ These could run inside or outside the cluster

● Cloud Providers will implement support for their IaaS
○ GCE, AWS, Azure, Digital Ocean, Terraform and Docker Machine, etc.

● Port existing tools to target Cluster API
○ Cluster upgrades, auto repair, cluster autoscaler

“GitOps” for your cluster with the Cluster API

1. With Kubernetes we manage our
applications declaratively

a. Why don’t we (in some cases) do that for the
clusters as well?

2. With the Cluster API, we can declaratively
define what the cluster should look like
a. The installer tools will then consume this

“standard” API and act on it

b. These API types can be stored in a CRD or on disk

apiVersion: cluster.k8s.io/v1alpha1

kind: MachineSet

metadata:

 name: my-first-machineset

spec:

 replicas: 3

 selector:

 matchLabels:

 foo: bar

 template:

 metadata:

 labels:

 foo: bar

 spec:

 providerConfig:

 value:

 apiVersion: "gceproviderconfig/v1alpha1"

 kind: "GCEProviderConfig"

 zone: "us-central1-f"

 machineType: "n1-standard-1"

 image: "ubuntu-1604-lts"

 versions:

 kubelet: 1.10.2

 containerRuntime:

 name: docker

 version: 1.12.0

Recap
1. Identify the needs of your business

a. How much money and effort do you want to put into HA & security?

2. High Availability != multiple masters
a. Multiple masters are a requirement for high availability

3. Pay attention to the certificate identities for your components
a. And make sure you lock things down well with RBAC, disable unnecessary ports, etc.

4. Declarative control over your cluster is better than imperative
a. The Cluster API (still alpha) and the GitOps models might be worth checking out

Thank you!
@luxas on Github

@kubernetesonarm on Twitter
lucas@luxaslabs.com

https://github.com/luxas
https://twitter.com/kubernetesonarm
mailto:lucas@luxaslabs.com

Related resources (in no particular order)
1. https://5pi.de/2017/12/15/production-grade-kubernetes/
2. https://youtu.be/PXJu8ujNEmU
3. https://thenewstack.io/ebooks/kubernetes/state-of-kubernetes-ecosystem/
4. https://kccncna17.sched.com/event/CU5x/101-ways-to-crash-your-cluster-i-marius-grigoriu-emmanuel-gomez-nordstrom
5. https://kccncna17.sched.com/event/CU6H/certifik8s-all-you-need-to-know-about-certificates-in-kubernetes-i-alexander-brand-apprenda
6. https://kccncna17.sched.com/event/CU86/shipping-in-pirate-infested-waters-practical-attack-and-defense-in-kubernetes-a-greg-castle-cj-cu

llen-google
7. https://kccncna17.sched.com/event/CU6z/hacking-and-hardening-kubernetes-clusters-by-example-i-brad-geesaman-symantec
8. https://kccncna17.sched.com/event/CUFK/keynote-kubernetes-at-github-jesse-newland-principal-site-reliability-engineer-github
9. https://kccncna17.sched.com/event/CU8b/what-happens-when-something-goes-wrong-on-kubernetes-reliability-i-marek-grabowski-tina-zha

ng-google
10. https://kccncna17.sched.com/event/CU64/automating-and-testing-production-ready-kubernetes-clusters-in-the-public-cloud-ron-lipke-gann

etusa-today-network
11. https://stripe.com/blog/operating-kubernetes
12. https://blog.envoyproxy.io/introduction-to-modern-network-load-balancing-and-proxying-a57f6ff80236
13. https://jvns.ca/blog/2017/10/10/operating-a-kubernetes-network/
14. https://acotten.com/post/kube17-security
15. https://applatix.com/making-kubernetes-production-ready/
16. https://www.aquasec.com/wiki/display/containers/Kubernetes+in+Production
17. https://www.weave.works/blog/provisioning-lifecycle-production-ready-kubernetes-cluster/
18. https://www.weave.works/blog/demystifying-production-ready-apps-on-kubernetes-with-carter-morgan
19. https://www.slideshare.net/gn00023040/all-the-troubles-you-get-into-when-setting-up-a-production-ready-kubernetes-cluster
20. https://www.slideshare.net/gn00023040/a-million-ways-of-deploying-a-kubernetes-cluster
21. https://blog.sophaskins.net/blog/misadventures-with-kube-dns/

https://5pi.de/2017/12/15/production-grade-kubernetes/
https://youtu.be/PXJu8ujNEmU
https://thenewstack.io/ebooks/kubernetes/state-of-kubernetes-ecosystem/
https://kccncna17.sched.com/event/CU5x/101-ways-to-crash-your-cluster-i-marius-grigoriu-emmanuel-gomez-nordstrom
https://kccncna17.sched.com/event/CU6H/certifik8s-all-you-need-to-know-about-certificates-in-kubernetes-i-alexander-brand-apprenda
https://kccncna17.sched.com/event/CU86/shipping-in-pirate-infested-waters-practical-attack-and-defense-in-kubernetes-a-greg-castle-cj-cullen-google
https://kccncna17.sched.com/event/CU86/shipping-in-pirate-infested-waters-practical-attack-and-defense-in-kubernetes-a-greg-castle-cj-cullen-google
https://kccncna17.sched.com/event/CU6z/hacking-and-hardening-kubernetes-clusters-by-example-i-brad-geesaman-symantec
https://kccncna17.sched.com/event/CUFK/keynote-kubernetes-at-github-jesse-newland-principal-site-reliability-engineer-github
https://kccncna17.sched.com/event/CU8b/what-happens-when-something-goes-wrong-on-kubernetes-reliability-i-marek-grabowski-tina-zhang-google
https://kccncna17.sched.com/event/CU8b/what-happens-when-something-goes-wrong-on-kubernetes-reliability-i-marek-grabowski-tina-zhang-google
https://kccncna17.sched.com/event/CU64/automating-and-testing-production-ready-kubernetes-clusters-in-the-public-cloud-ron-lipke-gannetusa-today-network
https://kccncna17.sched.com/event/CU64/automating-and-testing-production-ready-kubernetes-clusters-in-the-public-cloud-ron-lipke-gannetusa-today-network
https://stripe.com/blog/operating-kubernetes
https://blog.envoyproxy.io/introduction-to-modern-network-load-balancing-and-proxying-a57f6ff80236
https://jvns.ca/blog/2017/10/10/operating-a-kubernetes-network/
https://acotten.com/post/kube17-security
https://applatix.com/making-kubernetes-production-ready/
https://www.aquasec.com/wiki/display/containers/Kubernetes+in+Production
https://www.weave.works/blog/provisioning-lifecycle-production-ready-kubernetes-cluster/
https://www.weave.works/blog/demystifying-production-ready-apps-on-kubernetes-with-carter-morgan
https://www.slideshare.net/gn00023040/all-the-troubles-you-get-into-when-setting-up-a-production-ready-kubernetes-cluster
https://www.slideshare.net/gn00023040/a-million-ways-of-deploying-a-kubernetes-cluster
https://blog.sophaskins.net/blog/misadventures-with-kube-dns/

