
Going from Source to Image
Introduction to Key Concepts

Ben Parees(Red Hat)
Matt Moore (Google)
Steve Speicher (Red Hat)

Agenda

• What do we mean by source to image?
• Why would you want it?
• Available approaches

• Dockerfile-based: Docker, Kaniko, img, buildah
• Source-based: s2i, buildpacks, “FTL”

• Discussion

What is it?

• Generally, a mechanism for going from application source to
a runnable application image

• Ideally, by abstracting/hiding the details of image construction
from an application developer

• Don’t give them permissions+complexity they don’t need
• Give them tools that consume the artifacts they already know how

to work with (source code, not dockerfiles)

Why do I want it?

• Kubernetes runs images
• You need to build images
• Why not build images on Kubernetes?

• One less piece of infrastructure to maintain
• Need a secure mechanism to do so

• Attend our Deep Dive session to discuss how these
technologies can be brought to Kubernetes

Approaches - Docker Daemon

• Have an accessible docker daemon
• Run “docker build”
• Run “docker push”
• Pros

• It’s what every developer knows how to do today
• Cons

• Handing out docker socket privileges on shared systems isn’t
viable

Approaches - Daemon-less Dockerfile
Builds

• Consume a Dockerfile, but build image without a docker daemon
• Run a container directly and invoke Dockerfile steps directly, committing result
• … or just construct image layers directly

• Pros
• Docker build-like experience (just write a Dockerfile)
• Potentially more control over image layers (combine or shard)
• Aim is for greater security

• Cons
• Dockerfile fidelity

• May lag in supporting the latest Dockerfile syntax extensions
• Different approaches to image layer construction

• How many layers are in the final image, what is in a given layer

Approaches - Daemon-less Dockerfile
Builds

• buildah
• Runs a container directly (no container runtime daemon)
• Simulates Dockerfile evaluation within the container
• Commits the final container state (no layers)

• img
• “You could even probably use buildah as unprivileged if you use the same instructions

from the unprivileged mounting section below.” -- img README.md
• kaniko

• Simulates Dockerfile evaluation within an empty container
• Designed to be run within a container orchestrator (e.g. on-cluster)

• 100% user-mode: no syscalls to start/stop containers or snapshot filesystem.
• Directly publishes resulting image to Registry

https://github.com/genuinetools/img#prior-art

Approaches - Dockerfile-less builds

• User input is source / intent: “I want to run a Node.js web server”
• Builder makes it so.
• Sometimes incorporates detection.

• Pros:
• Less configuration
• Tools can intelligently build layers, better/safe layer caching.
• More serviceable by vendors
• Docker image best practices can be codified into tools

• Cons:
• Less flexible
• Very fragmented across vendors, no real standard.

Approaches - Dockerfile-less builds

• Source to Image
• User provides source, source gets built+layered into an application image
• Dependent on ecosystem of framework/language builder images

• Buildpacks
• Popularized by Heroku, moving towards containers.
• User provides source, “build” produces “droplet”, “export” produces container image

• FTL
• Purpose-built source to image builders per-language, goal is layer-per-dependency
• Insight: turn build incrementality into deploy incrementality.

• Bazel
• Google’s OSS build system, supports declarative image builds
• Used for user-mode Docker image builds for 3+ years

Observations

• Clear trend toward securing the image build process
• Often in support of on-cluster builds

• Clear interest in better image layering strategies
• Better control over how to group layers, not arbitrary delineation in

the Dockerfile

• Clear gap for building images directly from source (in a
standard way)

Discuss!

References

• Buildah - https://github.com/projectatomic/buildah
• Img - https://github.com/genuinetools/img
• Kaniko - https://github.com/GoogleContainerTools/kaniko
• S2I - https://github.com/openshift/source-to-image
• Buildpacks - https://github.com/sclevine/packs
• FTL - https://github.com/GoogleCloudPlatform/runtimes-common/blob/master/ftl
• JIB - https://github.com/GoogleContainerTools/jib
• Bazel - https://github.com/bazelbuild/rules_docker#language-rules

https://github.com/projectatomic/buildah
https://github.com/genuinetools/img
https://github.com/GoogleContainerTools/kaniko
https://github.com/openshift/source-to-image
https://github.com/sclevine/packs
https://github.com/GoogleCloudPlatform/runtimes-common/blob/master/ftl
https://github.com/GoogleContainerTools/jib
https://github.com/bazelbuild/rules_docker#language-rules

Backup

Approaches - buildpacks

• Invented by Heroku, also adopted by Cloud Foundry / Deis
• Lazy binding of application logic to language runtimes

• Former: “Slugs” (Heroku) or “Droplets” (Pivotal)
• Latter: “Stacks”

• Build
• Runs within container to produce “slug”

• Export
• Enables “rebasing” by rerunning the export.
• Binds the “slug” to a “stack” and publishes to registry.

Approaches - Google “FTL” builders

• Google Container Builder images for Appengine / Functions.
• Turns source into images following idiomatic conventions

• Python: pip install, Node.js: npm install, …
• VERY purpose-built and restricted in capabilities.

• Insight: turn build incrementality into deploy incrementality.
• No Docker

• Assembles image layers directly against Docker Registry API
• Enables caching and a variety of neat optimizations.

Approaches - Bazel + rules_docker

• Bazel
• OSS form of Google’s internal build system
• Very explicit dependency representation

• rules_docker
• Declarative container image construction
• Inspiration and reference implementation for aspects of “FTL”

• No Docker
• Unprivileged, reproducible, and verifiable docker builds for 3+ years at Google.
• Supports cross-construction of Docker images (e.g. OSX => Linux)
• … no support for “RUN” => hard for most to adopt.

Approaches - S2I

• CLI tool for building images
• User provides source, someone provides the s2i builder

image
• S2I builder image knows how to convert source to a runnable state
• S2I commits the new container after conversion and pushes the

image
• First class support within OpenShift
• Can be made to run on Kubernetes
• Wraps access to the docker daemon

• Users have no direct access to the daemon
• Can control what user id performs the image assembly (no root)

Dimensional Analysis

• Privileged vs Root vs Unprivileged vs VM-based isolation
• Also user privileged vs wrapped privileged

• Performance implications
• Is the host layer cache shared between builds? Across nodes?
• Are layers reusable between builds for assembly + push

• E.g. Layer squashing effectively destroys layer reuse
• User experience/API/Input

• Dockerfile
• Application Source

• E.g. s2i, buildpacks, but someone must construct those builders/buildpacks

