
Building Images on Kubernetes
Toward a first class approach

Ben Parees(Red Hat)
Steve Speicher (Red Hat)

Matt Moore (Google)

Agenda

• Current state of the art+limitations
• Roll your own
• OpenShift Build api

• Proposal/Discussion
• A CRD for Builds

Roll your own

• How
• Run a privileged pod
• Mount a docker socket
• Invoke docker build
• Push resulting image

• Good
• You can do it today on any cluster

• At least ones that have a docker daemon (e.g. not CRI-O)
• Good layer sharing/reuse during image pull/build/push

• Bad
• Security nightmare
• Developers must learn/use Dockerfiles

OpenShift Build API

• How
• Build api object defines the build to be run
• Controller creates a privileged pod
• Pod contains safe logic for interacting with s2i or docker build

• Good
• First class api for interacting with builds on the cluster
• Users don’t get or need privileged pods or docker daemon access
• S2I builds don’t require a Dockerfile
• Good layer sharing/reuse during image pull/build/push

• Bad
• Privileged pods are still a potential exposure for the cluster
• API+Controller doesn’t exist on Kubernetes
• Still requires a docker daemon on the hosts (makes moving to CRI-O less useful)

OpenShift Build API

• Inputs
• Git source
• Content from images
• Secrets
• Environment variables
• Secrets for accessing inputs

• Scheduling
• Serial/Parallel
• Resources (memory, cpu limit)

• Triggers
• Webhooks
• Image change

• Output image target
• Secret for pushing

OpenShift API Example

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "ruby-sample-build"
spec:
 runPolicy: "Serial"
 triggers:
 - type: "GitHub"
 github:
 secret:
 name: somesecret
 - type: "ImageChange"
 source:
 git:
 uri: "https://github.com/myapp/ruby"
 ref: mybranch
 sourceSecret:
 name: mygitsecret

strategy:

 sourceStrategy:

 from:

 kind: "ImageStreamTag"

 name: "ruby:2.4"

 output:

 to:

 kind: "ImageStreamTag"

 name: "origin-ruby-sample:latest"

 pushSecret:

 name: mypushsecret

 postCommit:

 script: "bundle exec rake test"

Container Builder Interface

• Defines a CRD for docker-type builds
• Abstracts several dockerfile build tools

• Docker, BuildKit, Buildah, Kaniko
• Runs them on a Kubernetes cluster
• Same security challenges as any individual dockerfile build

tool
• Build context from git or configmap

argoproj API

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: sidecar-dind-
spec:
 entrypoint: dind-sidecar-example
 templates:
 - name: dind-sidecar-example
 container:
 image: docker:17.10
 command: [sh, -c]
 args: |
 # Wait for Docker to come up
 until docker ps;
 do sleep 3;
 done;
 # Dockerfile build
 docker build -t foo .
 docker push foo
 env:
 - name: DOCKER_HOST
 value: 127.0.0.1

 sidecars:

 - name: dind

 image: docker:17.10-dind

 securityContext:

 privileged: true

 mirrorVolumeMounts: true

Based on: https://github.com/argoproj/argo/blob/master/examples/sidecar-dind.yaml

https://github.com/argoproj/argo/blob/master/examples/sidecar-dind.yaml

Google Container Builder API

steps:

Can have many steps, run in sequence on the same Node.

Steps are just “builder” containers.

- name: 'gcr.io/cloud-builders/docker'

 args: ['build', '-t', 'gcr.io/my-project/my-image', '.']

images: ['gcr.io/my-project/my-image']

Today: VM sandbox w/ daemon socket access.
Want to move more towards kaniko / FTL / ...
Want to make more K8s-native.

Squinting at the landscape

• Source
• Methods of conveying what to build

• Steps
• How to build it
• Often expressed (or implemented) through “builder” containers (see

earlier talk!)
• Volumes

• To share data across steps (e.g. build cache)
• Other important considerations:

• Authentication
• Outputs

Proposal

• Let’s define a Build api+controller for Kubernetes
• Input content
• Image build mechanism(pluggable?)
• Push resulting image

Discuss!

References

• OpenShift Builds - https://docs.openshift.org/latest/dev_guide/builds/index.html
• CBI - https://github.com/containerbuilding/cbi
• Argo - https://github.com/argoproj/argo

https://docs.openshift.org/latest/dev_guide/builds/index.html
https://github.com/containerbuilding/cbi
https://github.com/argoproj/argo

