
Service Catalog Deep Dive
Michael Kibbe mkibbe@google.com

Morgan Bauer mbauer@us.ibm.com @ibmhb

mailto:mkibbe@google.com
mailto:mbauer@us.ibm.com


Agenda

• Where are we now?

• Where were we, how did we get here?

• Where are we going?



Current Status – Where are we?

• OSB API

• Types

• Build

• API Server

• Controller

• svcat CLI



OSB API

• Many in this group participate

• Some thing swe've driven
• json schema

• async binding

• Get

• cluster id

• Generic actions



Resource Model

• Follows along the main types of OSBAPI

• Turns the five RPC resources into standard kubernetes objects

• Spec & Status



Build Flow

• Travis + jenkins

• Single Hyperkube-like binary output

• Charts into https://svc-catalog-charts.storage.googleapis.com/

• Images into quay.io for multiple arches

https://svc-catalog-charts.storage.googleapis.com/


API Server

• Upstream API Machinery reuse

• Code Generator reuse
• Client, listers, informers, some extensions

• Types: conversion, defaulting



Controller Design

• Multiple Controllers in a manager

• One for each major API type

• Uses generated code for clients and watchers



svcat cli

• Donated from microsoft

• Standalone binary cli
• svcat get brokers

• Can be used as a kubectl plugin
• kubectl svcat get brokers

• Pretty output



How did we get here?

• Timeline

• Issues

• Challenges



Timeline

• August 2016 idea as kube implementation of OSBAPI

• November 2016 - (1.4) first F2F in Boulder, first etcd backed apiserver

• December 2016 - (1.5) Initial Code Drop

• January 2017 – second F2F

• February 2017 – Add TPR based storage, first client-go release

• March 2017 – (1.6) apimachinery release, alpha API Aggregation

• April 2017 – Svc-cat use of API Aggregation

• June 2017 (1.7) - CRD enter beta, API Aggregation Beta

• October 2017 (1.8) – remove k/k dependency, drop TPR

• December 2017 (1.9) - (?)

• April 2018 (1.10) - API Aggregation Stable



Issues

• Upstream apimacachinery vendor & rebase
• Over multiple major versions of kube

• Rebase hell

• Mismatch between OSB and Kube resource behavior
• Guids vs names

• Imperative vs declarative

• Broker source of truth vs kube source of truth

• Controller issues
• Again reusing a lot of upstream code which we did not know how to 

properly use, or it had changed from underneath us by the time we 
thought we understood it.



Challenges

• Bleeding edge feature usage
• API Aggregation

• Alpha through to stable. Push for docs.

• Can't override core resources that don't exist, naming conflicts

• API Machinery
• Inaccessibility of etcd

• Code Generators

• RBAC rules

• All of the above interact with Helm Charts for installation

• TPR backend

• Pod preset moving out of core to us



Where are we going?

• CRDs or Blob-store resource

• Mutating webhooks for pod-presets

• GA planning being done

• Cluster and namespace scoped versions of all resources



tl;dr

• Use CRDs
• If you must make an apiserver, use apiserver-builder

• Use the example-controller and avoid modifying anything but 
the sync loop

• Spec and state is decent, but could be better if they were 
separate objects with separate lifecycles

• Keep your state machine documented
• Keep your code modular



Questions?

• Resources
• Service Catalog Meeting Agenda

• https://github.com/kubernetes-incubator/service-catalog

• Sevice Catalog Meeting Youtube Playlist

https://docs.google.com/document/d/17xlpkoEbPR5M6P5VDzNx17q6-IPFxKyebEekCGYiIKM
https://github.com/kubernetes-incubator/service-catalog
https://www.youtube.com/playlist?list=PL69nYSiGNLP2k9ZXx9E1MvRSotFDoHUWs

