
SIG Instrumentation: Intro
@brancz, @metalmatze & @piosz

Mission

“Covers best practices for cluster observability through
metrics, logging, and events across all Kubernetes

components and development of relevant components.
Coordinates metric requirements of different SIGs for

other components through finding common APIs.”

Charter

● Core metrics pipeline
● Core logs pipeline
● Instrumenting system components
● Monitoring extensions
● Integration with 3rd party monitoring/logging solutions

Core metrics pipeline

● kubectl top
● Master Metrics API
● Metrics Server
● Kubelet Summary API (with SIG Node)
● cadvisor (with SIG Node)

Core logging pipeline

● kubectl logs
● exposing logs from node (with SIG Node)
● log retention/rotation (with SIG Node)
● handling logs in CRI (with SIG Node)

Monitoring extensions

● kube-state-metrics
● Custom Metrics API
● Custom Metrics API adapters (with monitoring vendors)
● Heapster

Integration with 3rd party solutions

● best practises and guidelines
● reference integrations
● consuming metadata

Leads

Frederic Branczyk
@brancz

Piotr Szcześniak
piosz@

Fabian Reinartz
@fabxc
Emeritus

Meetings

 every second Thursdays at 17:30 UTC

Core pipeline in 2017

● Core Metrics API in beta
● Metrics Server in beta

Monitoring Extensions in 2017

● Custom Metrics API in beta
● Custom Metrics API adapter for Prometheus
● Custom Metrics API adapter for Stackdriver
● kube-state-metrics in GA

2018: stabilization

● Core Metrics API to GA
● Custom Metrics API to GA
● graduate Metrics Server from incubator
● deprecate Heapster

2018+: new

● Historical Metrics API
● Standardized way of consuming metadata for 3rd party
● Logs from files?

Resource Metrics API

● Aggregated API

Kubernetes

API

Resource metrics

API

implementation

node1

node2

metrics-server

kubectl top

● Resource metrics API (v1.10)
○ Pod/Container/Node metrics

○ CPU/Memory

● Pod/Container -> namespaced

● Node -> non-namespaced

kubectl logs

Kubernetes

API

pods/logs

Resource metrics

API

implementation

kubelet/node: node/logs

/var/log/pods
/var/log/containers

* logs rotated at 10mb by default

Events

● Information about decisions by the scheduler, information about pod, …

● Updated over time: first seen, last seen, description

● Stored in etcd (--etcd-servers-overrides=/events#http://127.0.0.1:4002)

Prometheus data model

● Identified by unique label combination

__name__ = http_requests_total code = 200 method = GET 1

Prometheus data model

● Counter
● Gauge
● Histogram
● Summary

Prometheus format

http_requests_total{code=”200”,methed=”GET”} 12

Prometheus clients

● Official:
○ Go, Java or Scala, Python, Ruby

● Community:
○ Bash, C++, Common Lisp, Elixir, Erlang, Haskell, Lua for Nginx,

Lua for Tarantool, .NET / C#, Node.js, PHP, Rust

registry.MustRegister(requestCounter)

requestCounter.withLabels(“200”, “GET”).Inc()

Prometheus endpoint

● /metrics
○ Usually registered by user with a registry

● Text format

Prometheus endpoint

Monitoring system components

kube-state-metrics

● Creates additional metrics for various objects
● Generates metrics about the Kubernetes' state
● Exposes raw data unmodified from the Kubernetes API
● For almost all objects there are metrics

○ Nodes
○ Pods
○ Deployments
○ DaemonSets
○ ...

Thank you!

Questions?

Demo

