
Monitoring, the
Prometheus Way
Julius Volz
Co-founder,
Prometheus
@juliusvolz

Monitoring system and TSDB:

• Instrumentation
• Metrics collection and storage
• Querying, alerting, dashboarding
• For all levels of the stack!

Made for dynamic cloud environments.

What is Prometheus

We don’t do:

• Logging or tracing
• Automatic anomaly detection
• Scalable or durable storage

What is it not?

• Started 2012 at SoundCloud
• Fully publicised in 2015
• Now part of CNCF

Origin

Motivation
SoundCloud in 2012:

• Early dynamic cluster scheduler
• Hundreds of microservices
• Thousands of service instances

→ Hard to monitor with StatsD/Graphite and other existing tools

→ Finally decided to build new solution

Architecture

Prometheus

web app

API server

node exporter

mysqld exporter

cAdvisor

Targets
Service Discovery

(DNS, Kubernetes, AWS, Consul,
custom...)

Grafana
HTTP API

UI

Alertmanager

• Dimensional data model
• Powerful query language
• Simplicity + efficiency
• Service discovery integration

Selling Points

Data Model
What is a time series?

<identifier> → [(t0, v0), (t1, v1), …]

<identifier> → [(t0, v0), (t1, v1), …]

Data Model
What is a time series?

What is this? int64 float64

Data Model
nginx.ip-1-2-3-4-80.home.200.http_requests_total

nginx.ip-1-2-3-5-80.settings.500.http_requests_total

nginx.ip-1-2-3-5-80.settings.400.http_requests_total

nginx.ip-1-2-3-5-80.home.200.http_requests_total

• Implies hierarchy that doesn’t exist
• User-level encoding of semantics
• Hard to extend

Graphite / StatsD:

Data Model
nginx.ip-1-2-3-4-80.home.200.http_requests_total

nginx.ip-1-2-3-5-80.settings.500.http_requests_total

nginx.ip-1-2-3-5-80.settings.400.http_requests_total

nginx.ip-1-2-3-5-80.home.200.http_requests_total

http_requests_total{job="nginx",instance="1.2.3.4:80",path="/home",status="200"}

http_requests_total{job="nginx",instance="1.2.3.5:80",path="/settings",status="500"}

http_requests_total{job="nginx",instance="1.2.3.5:80",path="/settings",status="400"}

http_requests_total{job="nginx",instance="1.2.3.4:80",path="/home",status="200"}

Graphite / StatsD:

Prometheus:

Selecting Series

nginx.*.*.*.500.*.http_requests_total

http_requests_total{job="nginx",status="500"}

→ Want label dimensions as first-class citizens.

PromQL
● New query language
● Great for time series computations
● Not SQL-style, but functional

Querying

All partitions in my entire infrastructure with more than
100GB capacity that are not mounted on root?

Querying

node_filesystem_bytes_total{mountpoint!=”/”} / 1e9 > 100

{device="sda1", mountpoint="/home”, instance=”10.0.0.1”} 118.8

{device="sda1", mountpoint="/home”, instance=”10.0.0.2”} 118.8

{device="sdb1", mountpoint="/data”, instance=”10.0.0.2”} 451.2

{device="xdvc", mountpoint="/mnt”, instance=”10.0.0.3”} 320.0

What’s the ratio of request errors across all service instances?

Querying

 sum(rate(http_requests_total{status="500"}[5m]))

/ sum(rate(http_requests_total[5m]))

{} 0.029

What’s the ratio of request errors across all service instances?

Querying

 sum by(path) (rate(http_requests_total{status="500"}[5m]))

/ sum by(path) (rate(http_requests_total[5m]))

{path="/status"} 0.0039

{path="/"} 0.0011

{path="/api/v1/topics/:topic"} 0.087

{path="/api/v1/topics} 0.0342

 99th percentile request latency across all instances?

Querying
histogram_quantile(0.99,

 sum without(instance) (rate(request_latency_seconds_bucket[5m]))

)

{path="/status", method="GET"} 0.012

{path="/", method="GET"} 0.43

{path="/api/v1/topics/:topic", method="POST"} 1.31

{path="/api/v1/topics, method="GET"} 0.192

Expression browser

Built-in graphing

Dashboarding

Alerting
alert: Many500Errors
expr: |
 (
 sum by(path) (rate(http_requests_total{status="500"}[5m]))
 /
 sum by(path) (rate(http_requests_total[5m]))
) * 100 > 5
for: 5m
labels:
 severity: "critical"
annotations:
 summary: "Many 500 errors for path {{$labels.path}} ({{$value}}%)"

• Local storage, no clustering
• HA by running two
• Go: static binary

Operational Simplicity

Prometheus

data

Local storage is scalable enough for many orgs:

• 1 million+ samples/s
• Millions of series
• 1-2 bytes per sample

Good for keeping a few weeks or months of data.

Efficiency

Decoupled Remote Storage

Prometheus

data

Adapter Remote
Storage

custom protocol
generic remote
read/write protocol

For scalable, durable,
long-term storage.

• On-demand VMs (EC2, Azure, GCP, ...)
• Dynamically scheduled service instances (Docker

Swarm, Kubernetes, ...)
• Microservices

→ many services, dynamic hosts, and ports

How to make sense of this all?

Dynamic Environments
...pose new challenges:

• ...know what should be there
• ...decide where to pull from
• ...add dimensional metadata to series

Service Discovery
Use service discovery to:

• VM providers (AWS, Azure, Google, ...)
• Cluster managers (Kubernetes, Marathon, …)
• Generic mechanisms (DNS, Consul, Zookeeper, custom, ...)

Service Discovery
Prometheus has built-in support for:

Prometheus helps you make sense of complex dynamic
environments via its:

• Dimensional data model
• Powerful query language
• Simplicity + efficiency
• Service discovery integration

Conclusion

Thanks!

